实射影空间

✍ dations ◷ 2025-09-08 23:36:57 #代数拓扑,微分几何,射影几何

数学中,实射影空间(real projective space),记作 RP,是 R+1 中的直线组成的射影空间。它是一个 维紧光滑流形,也是格拉斯曼流形的一个特例。

与所有射影空间一样,RP 是通过取 R+1 − {0} 在等价关系 ∼ λ 对所有实数 λ ≠ 0 下的商空间。对所有 属于 R+1 − {0},总可找到一个 λ 使得t λ 的范数为 1。恰好有相差一个符号的两个这样的 λ。

故 RP 也可通过将 R+1 中单位 -维球面 的对径点等同起来得到。

进一步我们限制在 的上半球面,仅将边界赤道上的对径点等同。这说明 RP 闭 -维圆盘 将边界 ∂ = −1 上的对径点等同。

R P 1 {\displaystyle \mathbf {RP} ^{1}} ,从而有一个群结构;覆叠映射 S 3 R P 3 {\displaystyle S^{3}\to \mathbf {RP} ^{3}} (3)是 (3) 的万有覆叠李群。

-维球面的对径映射(将 送到 -)生成 上一个 Z2 群作用。上已提到,这个作用的轨道空间是 RP。这个作用恰是一个覆叠空间作用,使 成为 RP 的二重复叠。因为对 ≥ 2, 是单连通的,它们在此情形也是万有覆叠。从而当 > 1 时,RP 的基本群是 Z2(当 =1 基本群是 Z 因为同胚于 )。基本的一个生成元是连接 中一组对径点的曲线投影到 RP 上的闭曲线。

-维射影空间的一些性质:

R P n {\displaystyle \mathbf {RP} ^{n}} 的齐次坐标 (1...+1) 中,考虑子集 使得 ≠ 0。每个 同胚于 R 中的开单位球体,且坐标转移函数是光滑的。这给出了 RP 一个光滑结构。

实射影空间 RP 有一个 CW结构,在每一维有 1 个胞腔。

在 上的齐次坐标 (1 ... +1) 中,坐标邻域 = {(1 ... +1)|1 ≠ 0} 可与 -维圆盘 的内部等价。当 = 0,我们有 RP - 1。从而 RP 的 - 1 骨架是 RP - 1,而且黏贴映射 : -1 → RP - 1 是一个二对一映射。我们可令

归纳证明 RP 是一个 CW 复形,在每一维有 1 个胞腔。

这些胞腔与旗流形(flag manifold)上一样是舒伯特胞腔(Schubert cell)。这便是,取一个完全旗(称为标准旗)0 = 0 < 1 <...< ;则闭 -胞腔是属于 中的直线。而开 -胞腔(-胞腔的内部)是 \ 中的直线(属于 但不属于 - 1 的直线)。

在齐次坐标(关于旗的)中,这些胞腔是

这不是一个正则 CW 结构,因黏贴映射是二对一的。但它的覆盖是球面上一个正则 CW 结构,在每一维有 2 个胞腔;事实上,这是球面上最小的正则 CW 结构。

在光滑结构的帮助下,莫尔斯函数的存在性可证明 RP 是一个 CW 复形。在齐次坐标中,这样一个函数可为:

在每个邻域 , 有非退化奇点 (0...,1,...0),这里 1 出现于第 个位置,具有莫尔斯指标 。这说明了 RP 是一个在每一维有一个胞腔的 CW 复形。

与上面 CW 结构相伴的胞腔链复形在每个维数 0,..., 恰有一个胞腔。对每个维数 ,边界映射  : → RP-1/RP-2,坍塌到 - 1 上的赤道然后将对径点等同。在奇数(偶数)维,度数为 0(2):

从而整同调是

R P n {\displaystyle \mathbf {RP} ^{n}} 为奇数,上面的同调计算已经做了说明。更具体地, R p {\displaystyle \mathbf {R} ^{p}} 是偶数。从而定向特征标(orientation character)是: π 1 ( R P n ) {\displaystyle \pi _{1}(\mathbf {RP} ^{n})} 为偶数,即 为奇数。

在实射影空间上有一个自然的线丛,称为重言丛。更确切地,这称为重言子丛,也存在一个对偶 -维丛称为重言商丛。

实射影空间有一个常正数量曲率度量,由二重复叠的标准圆球面(对极映射是一个等距)得来。

对标准圆度量,其截面曲率恒等于 1。

在标准圆度量中,射影空间的测度恰好是球面测度的一半。

无穷实射影空间构造为有限射影空间的正向极限或并集:

拓扑上说,这是艾伦伯格-麦克兰恩空间(Eilenberg-MacLane space) K ( Z / 2 , 1 ) {\displaystyle K(\mathbb {Z} /2,1)} (它被可缩的无穷球面 S {\displaystyle S^{\infty }} 二重复叠)并且是 BO(1),线丛的分类空间(更一般地,无穷格拉斯曼流形是向量丛的分类空间)。

系数取 Z/2 的上同调环是

这里 w 1 {\displaystyle w_{1}} 是第一斯蒂弗尔-惠特尼类:它是 w 1 {\displaystyle w_{1}} (其度数为 1)上的自由 Z / 2 {\displaystyle \mathbb {Z} /2} -代数。

相关

  • INN国际非专利药品名称,简称INN(International Nonproprietary Name for Pharmaceutical Substances),是世界卫生组织给每种药品的一个官方的非专利性名称。INN是新药开发者在新药
  • 最简式实验式(或称简式、最简式)不能区分最简个数比相同的几种化学物质,更不能解释结构或区分同分异构体。如,对于正己烷而言,它的示性式为CH3CH2CH2CH2CH2CH3,可以表明它的直链结构及分
  • 光市母女杀害事件光市母女杀害事件指在1999年4月14日日本山口县光市,18岁少年福田孝行(日本法律20岁方成年)闯入民宅强奸23岁女屋主遭顽抗,遂先杀后奸尸,再杀其11个月大女婴。受害者丈夫本村洋(与
  • 越前越前国(日语:越前国〔越前國〕/えちぜんのくに〔ゑちぜんのくに〕 Echizennokuni */?)为日本古代的令制国之一,属北陆道,又称越州。越前国的领域大约为现今福井县的岭北地方(日语
  • 数据拥塞控制协议数据拥塞控制协议(英语:Datagram Congestion Control Protocol,缩写为 DCCP)是由(互联网工程工作小组IETF)提出一个针对传输层中UDP的新传输的协议而发展出来,用来传输实时业务。它
  • 多利多利(英语:Dolly,1996年7月5日-2003年2月14日)是应用细胞核移植技术,利用哺乳动物的成年体细胞培育出的雌性绵羊。是第一个成功克隆的哺乳动物。它是由苏格兰罗斯林研究所和PPL Th
  • 方贵伦方贵伦(马来语:Fong Kui Lun;1946年9月28日-),祖籍广东省佛山市顺德区,马来西亚吉隆坡武吉免登行动党国会议员,1968年入党,也是民主行动党全国财政兼直辖区署理主席。 人民公正党
  • 卡尔·冯·魏茨泽克卡尔·弗雷德里希·冯·魏茨泽克男爵(德语:Carl Friedrich Freiherr von Weizsäcker,1912年6月28日-2007年4月28日),德国物理学家、哲学家。他是第二次世界大战期间由维尔纳·海
  • 尼欧可木阶尼欧可木阶,下白垩统的年代地层单元(白垩纪开始于约1.36亿年前,延续约0.71亿年)。包括下白垩统4个次一级的阶,从老到新有贝里阿斯阶、凡兰吟阶、欧特里沃阶、巴列姆阶。
  • BadfishBadfish 是一个美国“斯卡朋克”(融合车库摇滚与牙买加斯卡舞音乐)风格团体“Sublime乐团”的翻唱乐团,其名称取自于另一个乐团Sublime于1992年发行的专辑《40 oz. to Freedom