迈尔斯定理

✍ dations ◷ 2024-12-23 03:23:55 #黎曼几何,数学定理,几何不等式

迈尔斯定理,或称博内-迈尔斯定理,是黎曼几何的经典结果。这定理说如完备黎曼流形 M {\displaystyle M} 的里奇曲率有下界 ( n 1 ) k > 0 {\displaystyle (n-1)k>0} ,那么其直径不超过 π k {\displaystyle {\frac {\pi }{\sqrt {k}}}}

而且,如直径等于 π k {\displaystyle {\frac {\pi }{\sqrt {k}}}} ,则流形和有常截面曲率 k {\displaystyle k} 的球面等距。

这结果对流形的万有覆叠同样成立,特别地, M {\displaystyle M} 和其覆盖都紧致,所以覆叠是有限叶的, M {\displaystyle M} 有有限基本群。

相关

  • 23S23S rRNA是一个长为2904nt(在大肠杆菌中)的细菌核糖体大亚基(50S亚基)组分。核糖体的肽基转移酶活性中心就位于此rRNA的第五结构域(domain V),而此结构域也是许多抑制转录的抗生素
  • 矿石矿石,是指含有金属等重要元素成分矿物的岩石。矿石中常含有多种矿物,用应用价值的称为矿石矿物;与矿石矿物伴生,尚无法利用的矿物称为脉石矿物(脉石矿物与矿石矿物的划分不是绝对
  • 龙卷龙卷风,又称龙卷、卷风,是一种猛烈的天气现象,由直立中空管状的强烈旋转气球构成。龙卷风常发于积雨云或是积雨云以下,并通常形成上大下小的漏斗状,延伸至地面,并且常被尘土或碎片
  • 心皮雌蕊群,或雌花器(英语:Gynoecium),为被子植物花中的心皮的总称。传统上把较典型形态的花的花部中,由子房、花柱、柱头等部位构成者称为雌蕊(pistil),但在一朵花为多心皮、离生的状态
  • 盖厄斯·佩特罗尼乌斯·阿尔比特盖厄斯·佩特罗尼乌斯·阿尔比特(Gaius Petronius Arbiter,27年-66年)是一位罗马帝国朝臣(英语:Courtier)、抒情诗人与小说家,生活于罗马皇帝尼禄统治时期。讽刺小说《爱情神话(英语:T
  • 斐迪南一世 (神圣罗马帝国)斐迪南一世(德语:Ferdinand I,1503年3月10日-1564年7月25日)哈布斯堡王朝的奥地利大公和神圣罗马帝国皇帝(1556年起;1558年加冕)。他也是匈牙利和波希米亚的国王(1526年-1564年)。斐迪
  • 北京日本人学校北京日本人学校(日语:北京日本人学校/ぺきんにほんじんがっこう  ?, 英文:Japanese School of Beijing, JSB)是北京朝阳区的日本人所建的国际学校。 北京日本人学校学生们是外
  • 瓦赫兰瓦赫兰(阿拉伯语:وهران‎,转写:Wahrān;柏柏尔语:ⵡⴰⵀⵔⴻⵏ)又名奥兰(法语:Oran),位于阿尔及利亚西北部地中海沿岸,是该国第二大城市,也是奥兰省省会,市内人口759,645(2008年),都会区
  • 阿苏坦阿苏坦(西班牙语:Azután),是西班牙卡斯蒂利亚-拉曼恰托莱多省的一个市镇。总面积22平方公里,总人口335人(2001年),人口密度15人/平方公里。
  • 巴克科斯巴克科斯(拉丁语:Bacchus,希腊语:Βάκχος)是罗马神话中的酒神和植物神,相当于希腊神话中的狄俄倪索斯。希腊神狄俄倪索斯另有一名为巴克科斯·亚历山德鲁斯,在他被接纳入罗马