像素偏移 (英语:Pixel Shift,也译作像素位移)是一种辅助提升成像画质的技术,用于数码成像获得更好的色彩分辨率,或生成获得超分辨率图像。
像素偏移具有两种特定的实现,而其对应的原理并不相同。像素与像素之间存在间隙,而传感器无法捕捉这其中的信号,在亚像素(英语:Sub Pixel)范畴内,进行信息采集,用于补充图像,可以使最终获得图像,得到比传感器本身更高的分辨率。而就拜耳传感器结构而言,其固有的限制在于单一亚像素位置只能获得R、G、B其中一种色彩光线的信息,在合成中损失了其他部分;如果复用这些位置,则可以获得较高色彩分辨率的图像,同时也可以抑制摩尔纹。
额外信息的采集,可以通过布置多传感器,或是单一传感器位移后多张拍摄并合成实现;后者通常利用了相机上配置的传感器防抖机构实现,这也是“像素位移”这一名称的由来。
在数码摄影早期,受限于单块传感器像素数限制,通常会采用空间多块图像传感器,逻辑上偏移亚像素单位,以获得画质提升。这类排布与3CCD(英语:3CCD)技术存在交集,故往往一同使用。1995年,由美能达与爱克发联合开发的RD-175即为应用像素偏移式分布的单反相机。
在早期的高清制作中,受限于图像传感器成本或产能,流行的做法是在3CCD结构中,采用单块分辨率为较低的传感器,彼此错开像素,由机内插值合成全高清影像。例如松下的HVX200,使用三片960x540传感器;索尼的HDV采用三片960x1080传感器。
利用单块传感器位移后,进行多帧拍摄合成的技术,则利用了出现在数码相机上的防抖机构,利用移动传感器补偿进行防抖的分支。
首先做出实践的是哈苏,其在2008年推出的H3DII-39 MS上首先推出,MS即代表“Multi-Shot”,这一模式下,会轮换RGB亚像素位置进行拍摄,最终同样生成39MP图像,但具有更好的图像分辨率。2011年的哈苏H4D-200 MS,将这一功能扩展到超分辨率获取,可以以50MP的传感器,移动并拍摄6张,实现200MP输出。
2015年,宾得与奥林巴斯分别在自己的相机产品上配置像素位移功能,代表作分别是K3 II与E-M5 MarkII(英语:Olympus OM-D E-M5 Mark II),各自的实现也分别是更好的色彩分辨率与更高的像素输出。在此之后,索尼、松下以及徕卡公司纷纷在自己的数码相机中加入该功能。
由于应用到防抖组件,也有玩家将该功能戏称作“摇摇乐”。
由于从成像机理上说,现今的显微镜与望远镜也有采用传感器成像,本质上来说是一类特殊用途的数码相机,故也可以应用到像素偏移技术,例如徕卡的DMC6200,而例如奥林巴斯公司,其将应用在自己显微镜上的技术命名为OSR,并设立了专门的介绍页面,号称可以图片光学衍射极限,获得水平清晰度120nm的图像。
除了内置功能,一些爱好者也将应用可能拓展到所有相机。由于手持拍摄时,天然具有轻微的位移,在此条件下拍摄多张,之后以软件进行对齐叠加处理,以获得分辨率收益 。这一应用可能也迅速在手机摄影上得以实施,由于相对受限的传感器及镜头模组配置,以及较为强力的计算处理能力,使得这一领域对于计算摄影相关的提升十分有兴趣,2015年即出现了可以输出4倍分辨率(32MP)的应用Hydra;在2018年,Google在Pixel 3世代手机上配置了单枚后置摄像头,但依然以超分辨率方式,于Google Camera内提供了长焦拍摄功能,称作“Super Res Zoom”,即以此实现,次年,该研究于SIGGRAPH 2019发布。
不同厂商和相机之间,实现不同。宾得偏向于输出等像素高色深的照片,奥林巴斯则一贯致力于输出四倍像素。而机能差异也导致了差别,有的机器,如索尼,无法完成机内处理,需要打包保存在存储卡,等待后续处理;奥林巴斯和松下可以完成机内合成,也保留以电脑后制的可能。
在拍摄题材方面,通常集中限制在静物;但松下公司的S1系列,提供了动体识别,可以在拍摄合成中识别运动物体,而不进行叠加,以免产生虚影。虽然其间使用电子快门,但现今多数拍摄仍不支持闪光灯。
以Hydra为代表的app可以实现高分辨率输出,通常在8MP的iOS设备上,实现生成32MP图像。
而Google相机在2018年更新,伴随Pixel 3提供了Super Res Shot,弥补了没有配置长焦镜头的缺憾。
不同厂商于不同地区,可能使用不相同的命名,以下为部分命名: