分层广义线性模型

✍ dations ◷ 2025-04-03 17:59:47 #回归分析,统计模型

在统计学中,分层广义线性模型(hierarchical generalized linear models (HGLM))可视为广义线性模型的推广。在广义线性模型中,误差分量是统计独立的, 然而这一假设并非总是成立的。即在有些情况下,误差项之间有函数关系。分层广义线性模型允许有不同的误差分量,误差分量可以统计相关的,并不必要满足正态分布。当有不同的聚类存在时,同一聚类中的观测值是相关的,并且是正相关的。在这种情况下,广义线性模型是不适用的,忽略这些关联会引起造成一些问题 。

在分层模型中,观测值可进行聚类,并且观测值的分布不仅由所有聚类的共同结构决定,也由聚类的具体结构决定。于是,模型要引入随机效应分量,并且不同的聚类有不同的随机效应分量。设 y {\displaystyle y} 为响应变量, u {\displaystyle u} 为随机效应, g {\displaystyle g} 为连结函数。在分层广义线性模型中,需要假设 y | u {\displaystyle y|u} u {\displaystyle u} 满足: y u   f ( θ , ϕ ) {\displaystyle y\mid u\sim \ f(\theta ,\,\phi )} and u   f u ( α ) . {\displaystyle u\sim \ f_{u}(\alpha ).}

线性预测器形式为:

其中, μ = E ( y ) {\displaystyle \mu =E(y)} η = X β + v {\displaystyle \eta =X\beta +v} v = v ( u ) {\displaystyle v=v(u)} u {\displaystyle u} 的严格单调函数。在分层广义线性模型中,固定效应为 β {\displaystyle \beta } ,对所有观测值都相同。随机分量 u {\displaystyle u} 是不可观测的,不同聚类对应的随机分量取值是随机的。于是,同一聚类的观测值对应的 u {\displaystyle u} 的取值相同,不同聚类的观测值对应的 u {\displaystyle u} 的取值也不同。

为了进行参数推断,有必要保证满足可识别性(英语:Identifiability) 。在以上模型中,v是不可识别的,因为

其中 a {\displaystyle a} 为常数。 要使模型可识别,需要对参数另加约束。约束常加在随机效应上,比如 E ( v ) = 0 {\displaystyle E(v)=0}

假设不同的分布函数 y u {\displaystyle y\mid u} u {\displaystyle u} ,采用不同的链接函数 g {\displaystyle g} 和 ' v {\displaystyle v} ,可以得到不同的模型。另外,广义线性混合模型(英语:generalized linear mixed model)是分层广义线性模型的一个特例。在分层广义线性模型中, 随机效应的分布函数 u {\displaystyle u} 不必要满足正态分布。如果 u {\displaystyle u} 的分布为正态分布, v {\displaystyle v} 的链接函数为恒等函数,此时的分层广义线性模型即为广义线性混合模型。

y u {\displaystyle y\mid u} u {\displaystyle u} 的分布可取为共轭分布,此时分层广义线性模型有一些特殊的性质,并且易于计算和理解。比如,如果 y u {\displaystyle y\mid u} 的分布为平均值一定的泊松分布, u {\displaystyle u} 的分布为伽玛分布,并取标准对数连接函数,则此时分层广义线性模型为泊松共轭分层广义线性模型。如果 y u {\displaystyle y\mid u} 的分布为平均值一定的二项分布, u {\displaystyle u} 的分布为共轭贝塔分布,采用标准罗吉特连接函数,则此时分层广义线性模型为贝塔共轭模型。另外,广义线性混合模型其实就是正态共轭分层广义线性模型。

常见的模型总结如下:

分层广义线性模型适用条件是观测值可归为不同的聚类。估计函数有两类:固定效应估计函数和随机效应估计函数,分别相应于 η = x β {\displaystyle \eta =\mathbf {x} {\boldsymbol {\beta }}} v ( u ) {\displaystyle \mathbf {v(u)} } 中的参数。有多种方法进行分层广义线性模型中的参数估计。如果只对固定效应估计函数感兴趣,可以采用总体平均模型。如果要推断个体,就需要估计随机效应。 拟合分层广义线性模型有多种技术。

分层广义线性模型在实际生活中有诸多应用。

这一模型可用于分析半导体制造中相互关联的过程形成的负载的层级过程。工程师可以应用此模型发现和分析重要的次过程,同时评估这些次过程对最终性能的影响 。


市场问题也可以用分层广义线性模型来分析。研究者应用此模型研究了一国范围内的消费者,以解决国际市场研究中的嵌套数据结构问题。

相关

  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 胡萝卜素胡萝卜素(英语:carotene)是指若干种相关的不饱和烃,分子式为C40H56,由植物合成,但动物不能制造。胡萝卜素是橘色的光合色素。对于人眼视觉,各种胡萝卜都是有颜色的。胡萝卜素使许多
  • 昆比恩昆比恩(Queanbeyan)是澳洲新南威尔士州南部高原地区的城市,位于新南威尔士州的东南部。是昆比恩市议会的所在地。2006年人口为34,084人。昆比恩在面积较小的澳洲首都特区(全境在
  • Bsub2/sub血栓素B2是血栓素A2的一种不活跃的产物,不像血栓素A2,其对血小板激活及血小板聚集没有影响。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/
  • 乏力虚弱、无力、乏力(英语:weakness或asthenia)是一种症状的统称,有着多种不同的用法。该症状的成因多种多样,可细分为真性肌无力(true muscle weakness),或者体感肌无力。真性肌无力是
  • 宜兰县市区公车宜兰县市区公车,为宜兰县政府所监理的市区汽车客运服务,为宜兰县政府所规划的“宜兰劲好行幸福交通网”的一环。2007年11月,国道五号汽车客运开通,宜兰县政府欲借由带动宜兰县市
  • 林孝信林孝信(1944年4月3日-2015年12月20日),生于日治台湾台北州台北市。台湾《科学月刊》创办人,曾参与保钓运动,因此列名黑名单。专长领域:物理学史与哲学,数学史与哲学,科学教育,通识教育
  • 美国观光旅游业是美国的一大产业。每年都有为数以百万计的国内外游客观光美国,到访美国的自然奇观、城市街景、历史名胜和娱乐场所。美国的旅游业在19世纪末期和20世纪初期飞速成长。
  • 日本LGBT权益LGBT权益虽然在日本不被民事法律保护,不过同性性行为在日本是合法的。目前没有国家层面的法律反对或认可同性恋关系。同性恋在日本国宪法、民事或刑事法律文件中均未提及。和
  • 克利夫顿 (尤宁岛)克利夫顿(Clifton)是加勒比海岛国圣文森特和格林纳丁斯格林纳丁斯群岛岛链上尤宁岛中的一座城镇,属于格林纳丁斯区的一部分,位于该岛东南海岸。克利夫顿服务于尤宁岛机场(英语:Uni