分层广义线性模型

✍ dations ◷ 2025-10-30 14:28:35 #回归分析,统计模型

在统计学中,分层广义线性模型(hierarchical generalized linear models (HGLM))可视为广义线性模型的推广。在广义线性模型中,误差分量是统计独立的, 然而这一假设并非总是成立的。即在有些情况下,误差项之间有函数关系。分层广义线性模型允许有不同的误差分量,误差分量可以统计相关的,并不必要满足正态分布。当有不同的聚类存在时,同一聚类中的观测值是相关的,并且是正相关的。在这种情况下,广义线性模型是不适用的,忽略这些关联会引起造成一些问题 。

在分层模型中,观测值可进行聚类,并且观测值的分布不仅由所有聚类的共同结构决定,也由聚类的具体结构决定。于是,模型要引入随机效应分量,并且不同的聚类有不同的随机效应分量。设 y {\displaystyle y} 为响应变量, u {\displaystyle u} 为随机效应, g {\displaystyle g} 为连结函数。在分层广义线性模型中,需要假设 y | u {\displaystyle y|u} u {\displaystyle u} 满足: y u   f ( θ , ϕ ) {\displaystyle y\mid u\sim \ f(\theta ,\,\phi )} and u   f u ( α ) . {\displaystyle u\sim \ f_{u}(\alpha ).}

线性预测器形式为:

其中, μ = E ( y ) {\displaystyle \mu =E(y)} η = X β + v {\displaystyle \eta =X\beta +v} v = v ( u ) {\displaystyle v=v(u)} u {\displaystyle u} 的严格单调函数。在分层广义线性模型中,固定效应为 β {\displaystyle \beta } ,对所有观测值都相同。随机分量 u {\displaystyle u} 是不可观测的,不同聚类对应的随机分量取值是随机的。于是,同一聚类的观测值对应的 u {\displaystyle u} 的取值相同,不同聚类的观测值对应的 u {\displaystyle u} 的取值也不同。

为了进行参数推断,有必要保证满足可识别性(英语:Identifiability) 。在以上模型中,v是不可识别的,因为

其中 a {\displaystyle a} 为常数。 要使模型可识别,需要对参数另加约束。约束常加在随机效应上,比如 E ( v ) = 0 {\displaystyle E(v)=0}

假设不同的分布函数 y u {\displaystyle y\mid u} u {\displaystyle u} ,采用不同的链接函数 g {\displaystyle g} 和 ' v {\displaystyle v} ,可以得到不同的模型。另外,广义线性混合模型(英语:generalized linear mixed model)是分层广义线性模型的一个特例。在分层广义线性模型中, 随机效应的分布函数 u {\displaystyle u} 不必要满足正态分布。如果 u {\displaystyle u} 的分布为正态分布, v {\displaystyle v} 的链接函数为恒等函数,此时的分层广义线性模型即为广义线性混合模型。

y u {\displaystyle y\mid u} u {\displaystyle u} 的分布可取为共轭分布,此时分层广义线性模型有一些特殊的性质,并且易于计算和理解。比如,如果 y u {\displaystyle y\mid u} 的分布为平均值一定的泊松分布, u {\displaystyle u} 的分布为伽玛分布,并取标准对数连接函数,则此时分层广义线性模型为泊松共轭分层广义线性模型。如果 y u {\displaystyle y\mid u} 的分布为平均值一定的二项分布, u {\displaystyle u} 的分布为共轭贝塔分布,采用标准罗吉特连接函数,则此时分层广义线性模型为贝塔共轭模型。另外,广义线性混合模型其实就是正态共轭分层广义线性模型。

常见的模型总结如下:

分层广义线性模型适用条件是观测值可归为不同的聚类。估计函数有两类:固定效应估计函数和随机效应估计函数,分别相应于 η = x β {\displaystyle \eta =\mathbf {x} {\boldsymbol {\beta }}} v ( u ) {\displaystyle \mathbf {v(u)} } 中的参数。有多种方法进行分层广义线性模型中的参数估计。如果只对固定效应估计函数感兴趣,可以采用总体平均模型。如果要推断个体,就需要估计随机效应。 拟合分层广义线性模型有多种技术。

分层广义线性模型在实际生活中有诸多应用。

这一模型可用于分析半导体制造中相互关联的过程形成的负载的层级过程。工程师可以应用此模型发现和分析重要的次过程,同时评估这些次过程对最终性能的影响 。


市场问题也可以用分层广义线性模型来分析。研究者应用此模型研究了一国范围内的消费者,以解决国际市场研究中的嵌套数据结构问题。

相关

  • TEM透射电子显微镜(英语:Transmission electron microscope,缩写:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生
  • 天文学史天文学的历史非常久远,天文学可谓人类历史上古老的一门科学。从最初人类对于星象变化的认识开始,天文学就已经开始萌芽了。人们为了研究和制定各种时间或时令(例如:季节或者历法
  • 衣藻属正文衣藻属(学名:Chlamydomonas)是绿藻门下一个包括约325个物种的属。他们都是带有鞭毛的单细胞生物。有纤维素壁,营养细胞有两根等长鞭毛,叶绿体杯状,叶绿体前端或侧面有一红色
  • 肯纳威克人肯纳威克人(英语:Kennewick Man)是一具于1996年7月28日出土自美国华盛顿州哥伦比亚河岸肯纳威克城的史前人骨骸。据碳同位素分析,其年龄在距今8500年左右。是有史以来发现最完整
  • 朗德海花园场景《朗德海花园场景》(法语:Une scène au jardin de Roundhay),是路易斯·普林斯在1888年10月拍摄的短片,并为世界上已知最早的短片。本片约2秒长,被《吉尼斯世界纪录大全》收录为
  • 布特山布特山(英语:Boothill)是许多墓地的名字,主要出现在美国西部。 在19世纪,这是一个常见的名字,用来称呼枪手的墓地,或者那些“穿着靴子死去的人(英语:Die with your boots on)”,也就是
  • 五芳斋浙江五芳斋实业股份有限公司是一家以食品的生产、加工和销售为主的中华老字号,著名产品为五芳斋粽子。为中国最大的粽子产销企业。由于盛产稻米而商贸发达,浙江嘉兴市居民历来
  • 华盛顿县 (俄勒冈州)华盛顿县(Washington County, Oregon)是美国俄勒冈州西北部的一个县。面积1,881 平方公里。根据美国2000年人口普查,共有人口445,342。县治希尔斯波洛 。成立于1843年7月5日(称
  • 浊颚龈擦音浊颚龈擦音或浊拱龈后擦音(voiced palato-alveolar fricative 或 voiced domed postalveolar fricative)属齿龈后音,表示为⟨ʒ⟩,是⟨ʃ⟩相应的浊音。是法语、葡萄牙语、罗马
  • 格利泽667格利泽667(英语:Gliese 667,又称HR 6426或MLO 4)是天蝎座的一个三恒星系统,离地球大约6.97秒差距(22.7光年)。除了三个相互有引力约束的恒星系统外,它还包括第四个光学密近成员(视星