首页 >
洛伦兹力定律
✍ dations ◷ 2024-12-22 23:03:58 #洛伦兹力定律
在电动力学里,洛伦兹力(Lorentz force)是运动于电磁场的带电粒子所感受到的作用力。洛伦兹力是因荷兰物理学者亨德里克·洛伦兹而命名。根据洛伦兹力定律,洛伦兹力可以用方程,称为洛伦兹力方程,表达为其中,
F
{displaystyle mathbf {F} }
是洛伦兹力,
q
{displaystyle q}
是带电粒子的电荷量,
E
{displaystyle mathbf {E} }
是电场强度,
v
{displaystyle mathbf {v} }
是带电粒子的速度,
B
{displaystyle mathbf {B} }
是磁感应强度。洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。感受到电场的作用,正电荷会朝着电场的方向加速;但是感受到磁场的作用,按照右手定则,正电荷会朝着垂直于速度
v
{displaystyle mathbf {v} }
和磁场
B
{displaystyle mathbf {B} }
的方向弯曲(详细地说,假设右手的大拇指与
v
{displaystyle mathbf {v} }
同向,食指与
B
{displaystyle mathbf {B} }
同向,则中指会指向
F
{displaystyle mathbf {F} }
的方向)。洛伦兹力方程的
q
E
{displaystyle qmathbf {E} }
项目是电场力项目,
q
v
×
B
{displaystyle qmathbf {v} times mathbf {B} }
项目是磁场力项目。处于磁场内的载电导线感受到的磁场力就是这洛伦兹力的磁场力分量。洛伦兹力方程的积分形式为其中,
V
{displaystyle mathbb {V} }
是积分的体积,
ρ
{displaystyle rho }
是电荷密度,
J
{displaystyle mathbf {J} }
是电流密度,
d
τ
{displaystyle mathrm {d} tau }
是微小体元素。洛伦兹力密度
f
{displaystyle mathbf {f} }
是单位体积的洛伦兹力,表达为:1892年,荷兰物理学家亨德里克·洛伦兹提出洛伦兹力的概念。但是,在洛伦兹之前,就已经有发掘出洛伦兹力方程的形式,特别是在詹姆斯·麦克斯韦的1861年论文《论物理力线》里的公式(77):其中,
P
{displaystyle P}
、
Q
{displaystyle Q}
、
R
{displaystyle R}
分别为电场的三个分量,
μ
{displaystyle mu }
是磁导率,
d
x
d
t
{displaystyle {frac {dx}{dt}}}
、
d
y
d
t
{displaystyle {frac {dy}{dt}}}
、
d
z
d
t
{displaystyle {frac {dz}{dt}}}
分别为导电体的移动速度的三个分量,
α
{displaystyle alpha }
、
β
{displaystyle beta }
、
γ
{displaystyle gamma }
分别为磁场强度的三个分量,
F
{displaystyle F}
、
G
{displaystyle G}
、
H
{displaystyle H}
分别为磁矢势的三个分量,
Ψ
{displaystyle Psi }
是电势。后来,在他的1864年论文《电磁场的动力学理论》里,麦克斯韦将这公式列为麦克斯韦方程组的八个原本方程中的方程(D):其中,
v
{displaystyle mathbf {v} }
是速度,
H
{displaystyle mathbf {H} }
是磁场强度,
μ
{displaystyle mu }
是磁导率,
A
{displaystyle mathbf {A} }
是磁矢势,
ϕ
{displaystyle phi }
是电势。很明显地,麦克斯韦版是现代版的前导。两个版本的差别为:当麦克斯韦方程组描绘带电粒子怎样产生电磁场的同时,洛伦兹力方程描绘了移动于电磁场的带电粒子所感受到的电磁力。这使得整个电磁动力的图画得以完整。在一个复杂的物理系统里,带电粒子可能还会感受到别种作用力,像万有引力或核力。麦克斯韦方程组并非与这些作用力完全无关;而是通过带电粒子或电流密度与这些作用力耦合。对于实际的物质,在原则上和计算的复杂 程度上,洛伦兹力方程都不足以描述一群粒子的物理行为。在物质介质里的带电粒子,必须同时地响应和生成电磁场。除此以外,还必须考虑到描述这一群粒子的运动的传输方程,例如,玻尔兹曼传输方程(Boltzmann equation)、福克-普朗克方程(Fokker–Planck equation)、纳维-斯托克斯方程、等等。请参阅磁流体力学、超导现象、恒星演化、等等。在这些学术领域研究的科学家必须解析复杂的传输方程,求得带电粒子在时间和空间方面的响应。或许有些读者会认为这些理论只是靠着近似来处理一个大系综的带电粒子。从更深的层面来看,带电粒子也会对非电磁力,像万有引力,核力或边界条件等等,产生响应。给予作用于粒子的洛伦兹力的公式,将这公式代入牛顿第二运动定律,可以得到粒子的运动方程。解析这运动方程,就可以找到粒子的运动轨道。在一个简单的回旋加速器内,均匀磁场是
B
=
B
0
z
^
{displaystyle mathbf {B} =B_{0}{hat {mathbf {z} }}}
,电场是零。那么,运动于xy-平面的带电粒子
q
{displaystyle q}
所感受到的洛伦兹力
F
{displaystyle mathbf {F} }
为将这公式代入牛顿第二运动定律,其中,
m
{displaystyle m}
是带电粒子的质量,
a
{displaystyle mathbf {a} }
是带电粒子的加速度。由于带电粒子的加速度与速度互相垂直,带电粒子呈圆周运动。假设粒子带有正电荷,则这公式的一般解答为其中,
r
{displaystyle mathbf {r} }
是带电粒子的圆周运动轨道,
r
c
{displaystyle r_{c}}
是圆周半径,
ω
=
q
B
/
m
{displaystyle omega =qB/m}
是旋转角速度,
t
{displaystyle t}
是时间。朝着均匀磁场方向看,带电粒子会以反时针方向,呈匀速圆周运动。给予初始速率
v
0
{displaystyle v_{0}}
。那么,圆周半径为这圆周半径称为回旋半径(cyclotron radius)或拉莫半径(Larmor radius)。
ω
=
q
B
/
m
{displaystyle omega =qB/m}
称为回旋频率(cyclotron frequency)。带电粒子的动量
p
0
{displaystyle p_{0}}
为假设粒子带有负电荷,则运动方向会逆反,改为顺时针方向。假设初始速度有一个z-分量
v
z
0
{displaystyle v_{z0}}
,则带电粒子会呈等速螺旋运动。对于很多有意思的、比较复杂的实际案例,在磁场内运动的带电粒子(例如,等离子体的电子或离子),可以分为两部分处理。这两部分的叠加,足以描述这带电粒子的物理行为。第一部分是速度比较快的,环绕着某一点的圆周运动。环绕之点称为导向中心(guiding center)。另一部分是导向中心的漂移运动。其速度比较慢,会因不同种类的粒子而不同,又跟其电荷量、质量或温度有关。不同的漂移速度可能会造成电流或化学分离。许多经典电磁学教科书会用洛伦兹力定律来定义电场和磁场。假设检验电荷静止不动,
v
=
0
{displaystyle mathbf {v} =0}
,则洛伦兹力方程变为采用国际单位制,假设检验电荷的电量为1库仑,作用于检验电荷的劳伦兹力为1牛顿,则检验电荷感受到的电场为1牛顿/库仑。假设电场为零,则作用于电荷
q
{displaystyle q}
的洛伦兹力是对于一条线电荷密度为
λ
{displaystyle lambda }
的载流导线,总作用力为其中,
C
{displaystyle mathbb {C} }
是积分路径,
I
=
λ
v
{displaystyle mathbf {I} =lambda mathbf {v} }
是电流矢量。假设电流是稳定电流,则可以将电流从积分内提出,用矢量
d
ℓ
{displaystyle mathrm {d} {boldsymbol {ell }}}
来表示电流
I
{displaystyle mathbf {I} }
的方向:这公式给出了,在磁场内,载流导线感受到的磁场力。使用这公式和毕奥-萨伐尔定律,就可以推导出安培力定律(详尽细节,请参阅安培力定律)。假设,磁场是均匀磁场,积分路径是垂直于磁场的直线,则其中,
L
{displaystyle L}
是积分路径
C
{displaystyle mathbb {C} }
的长度,采用国际单位制,假设检验电流为1安培,作用于载流导线的单位长度的洛伦兹力为1牛顿/米,则检验电流感受到的磁场为1特斯拉。许多发电机的基本运作原理涉及动生电动势概念。将导线移动于磁场,则会产生电动势,称为动生电动势。如图右,假设一条长度为
L
{displaystyle L}
的细直导线,以速度
v
{displaystyle mathbf {v} }
移动于磁场
B
{displaystyle mathbf {B} }
。磁场
B
{displaystyle mathbf {B} }
以箭尾或叉叉表示,方向由银幕外部指入银幕。思考在这导线内的电荷
q
{displaystyle q}
,根据洛伦兹定律,会感受到洛伦兹力
F
l
o
r
e
n
t
z
{displaystyle mathbf {F} _{lorentz}}
:在这里,洛伦兹力也是磁场力。因为这磁场力的作用,正电荷会往导线的上端移动,负电荷会往导线的下端移动。在稳定平衡状态,这会感应出一个电场
E
{displaystyle mathbf {E} }
:电动势定义为造成开路电路的两个终端的电势差,对于每单位电荷所需做的功。所以,动生电动势
E
{displaystyle {mathcal {E}}}
为在这个例子里,稳定平衡状态时的电流等于零。假设载流导线与其他原件连结成一个电路,则会因为动生电动势而产生电流。例如,将一个电阻
R
{displaystyle R}
与导线的两端相连结,则流过电阻的电流
I
{displaystyle I}
为法拉第电磁感应定律阐明,穿过任意闭回路的磁通量的变化率,与这回路的电动势成正比:其中,
E
{displaystyle {mathcal {E}}}
是电动势,
Φ
B
{displaystyle Phi _{B}}
是磁通量,
t
{displaystyle t}
是时间。在时间
t
{displaystyle t}
通过任意曲面
Σ
(
t
)
{displaystyle Sigma (t)}
的磁通量
Φ
B
(
t
)
{displaystyle Phi _{B}(t)}
定义为其中,
r
{displaystyle mathbf {r} }
是位置,
d
a
{displaystyle dmathbf {a} }
是微小面元素。给予一个以常速度
v
{displaystyle mathbf {v} }
移动于磁场的闭回路
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
。那么,磁通量对于时间的全微分是其中,
Σ
(
t
)
{displaystyle Sigma (t)}
是边缘为
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
的曲面,
Σ
t
o
t
a
l
{displaystyle Sigma _{total}}
是包括
Σ
(
t
+
d
t
)
{displaystyle Sigma (t+dt)}
、
−
Σ
(
t
)
{displaystyle -Sigma (t)}
和
Σ
r
i
b
b
o
n
{displaystyle Sigma _{ribbon}}
的闭曲面,
Σ
r
i
b
b
o
n
{displaystyle Sigma _{ribbon}}
是边缘
∂
Σ
(
t
+
d
t
)
{displaystyle partial Sigma (t+dt)}
和
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
形成的边缘曲面。根据散度定理和高斯磁定律,其中,
V
t
o
t
a
l
{displaystyle mathbb {V} _{total}}
是闭曲面
Σ
t
o
t
a
l
{displaystyle Sigma _{total}}
包含的空间,
d
τ
{displaystyle dtau }
是微小体元素。通过边缘曲面
Σ
r
i
b
b
o
n
{displaystyle Sigma _{ribbon}}
的磁通量可以改变成一个线积分:所以,磁通量对于时间的全导数,或磁通量的变化率为运动于移动的闭回路
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
的一个电荷
q
{displaystyle q}
的速度
w
{displaystyle mathbf {w} }
为其中,
u
{displaystyle mathbf {u} }
是相对于闭回路
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
的电荷运动速度,
v
{displaystyle mathbf {v} }
是闭回路
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
的移动速度。这电荷会感受到洛伦兹力电动势
E
{displaystyle {mathcal {E}}}
定义为根据法拉第电磁感应定律,在计算积分时,闭回路
∂
Σ
(
t
)
{displaystyle partial Sigma (t)}
的微小线元素
d
ℓ
{displaystyle d{boldsymbol {ell }}}
与正在那位置的电荷的
u
{displaystyle mathbf {u} }
平行。所以,令两个磁通量变化率的方程相等,除去同有的移动的闭回路项目,则可得到应用斯托克斯定理,
∫
∂
Σ
E
⋅
d
ℓ
=
∫
Σ
∇
×
E
⋅
d
a
{displaystyle int _{partial Sigma }mathbf {E} cdot d{boldsymbol {ell }}=int _{Sigma }nabla times mathbf {E} cdot dmathbf {a} }
,可以得到由于
Σ
{displaystyle Sigma }
是任意取面,可以将被积式从积分中取出:这是麦克斯韦-法拉第方程。由于这方程的右手边是个对于时间的偏导数项目,只涉及固定的闭回路,不能用来计算移动中的闭回路。用麦克斯韦-法拉第方程,通常对于时间的偏导数的诠释只限制为固定边界。而在另一方面,不论导线的闭回路是刚硬固定的、是在运动中、是在形变过程中,不论磁场是不含时的或含时的,法拉第电磁感应定律都成立。但是,对于某些案例,法拉第电磁感应定律并不适用或使用起来很困难。这时候,必须使用洛伦兹力定律。详尽细节,请参阅法拉第电磁感应定律不适用案例。假设闭回路移动于不含时间的磁场
B
{displaystyle mathbf {B} }
,通过闭回路的磁通量
Φ
B
{displaystyle Phi _{B}}
会因为几种因素而改变:例如,假若磁场
B
{displaystyle mathbf {B} }
随着位置改变,闭回路移动至不同磁场
B
{displaystyle mathbf {B} }
的位置,则磁通量
Φ
B
{displaystyle Phi _{B}}
会改变。或者,假若相对于磁场,闭回路的定向改变,由于微小元素
B
⋅
d
A
{displaystyle mathbf {B} cdot dmathbf {A} }
的改变,磁通量
Φ
B
{displaystyle Phi _{B}}
也会改变。再举一个例子,假若闭回路扫掠过一个均匀的不含时磁场,由于闭回路的形变,磁通量
Φ
B
{displaystyle Phi _{B}}
会改变。对于这三个案例,法拉第电磁感应定律正确地计算出磁通量变化率
d
Φ
B
d
t
{displaystyle {frac {dPhi _{B}}{dt}}}
所产生的电动势。对比前面所述状况,假设固定的闭回路处于含时磁场
B
{displaystyle mathbf {B} }
,麦克斯韦-法拉第方程会显示出一个非保守性的电场
E
{displaystyle mathbf {E} }
产生于闭回路,靠着洛伦兹力的
q
E
{displaystyle qmathbf {E} }
项目,驱使载电粒子移动于导线。这状况也会改变磁通量
Φ
B
{displaystyle Phi _{B}}
,法拉第电磁感应定律也会正确地计算出磁通量变化率
d
Φ
B
d
t
{displaystyle {frac {dPhi _{B}}{dt}}}
所产生的电动势。根据亥姆霍兹分解(Helmholtz decomposition),电场和磁场可以用电势
ϕ
{displaystyle phi }
和磁矢势
A
{displaystyle mathbf {A} }
来表达:其中∇为梯度,∇⋅ 为散度,∇× 为旋度。将这两个公式代入洛伦兹力方程,则可得到可以化简为F
=
q
[
−
∇
ϕ
−
∂
A
∂
t
+
∇
(
v
⋅
A
)
−
(
v
⋅
∇
)
A
]
{displaystyle mathbf {F} =qleft}定义粒子的四维速度
u
β
{displaystyle u_{beta }}
为其中,
γ
{displaystyle gamma }
是洛伦兹因子,
c
{displaystyle c}
是光速,
v
=
(
v
x
,
v
y
,
v
z
)
{displaystyle mathbf {v} =(v_{x},,v_{y},,v_{z})}
是粒子的速度矢量。定义电磁场张量
F
α
β
{displaystyle F^{alpha beta }}
为其中,
E
{displaystyle mathbf {E} }
是电场矢量,
B
{displaystyle mathbf {B} }
是磁场矢量。结合牛顿运动定律与洛伦兹力定律在一起,以电磁场张量写为反变形式(contravariant form):其中,
p
α
{displaystyle p^{alpha }}
是四维动量,
τ
{displaystyle tau }
是粒子的固有时。应用洛伦兹变换,电磁场张量可以从一个参考系
S
{displaystyle S}
转换到另一个参考系
S
¯
{displaystyle {bar {S}}}
:其中,
Λ
μ
α
{displaystyle {Lambda ^{mu }}_{alpha }}
和
Λ
ν
β
{displaystyle {Lambda ^{nu }}_{beta }}
是洛伦兹变换矩阵。换另一种方法,定义四维势
A
α
{displaystyle A^{alpha }}
为其中,
ϕ
{displaystyle phi }
是电势,
A
{displaystyle mathbf {A} }
是磁矢势。定义四维坐标
x
α
{displaystyle x_{alpha }}
为那么,电磁场张量为先计算四维力(four-force)的
μ
=
1
{displaystyle mu =1}
分量(x-分量):将电磁场张量的分量代入,可以得到再将四维速度的分量代入,则会得到类似地,可以计算出四维力的
μ
=
2
{displaystyle mu =2}
和
μ
=
3
{displaystyle mu =3}
分量。所以,
相关
- 生活史生物学上,生物生命周期指得是一个生物体在生命开始到结束周而复始所历经的一系列变化过程。“这个概念与生命史,发育生物学和个体发生学密切相关,但在强调再生方面有所差异。”
- 市镇市镇(comune,复数为comuni)是意大利的最基本的行政区划,也是意大利的基层政权。目前,意大利的市镇(comuni)共有8101个。
- 电子跃迁分子电子跃迁表示分子中价电子从一个能级因为吸收能量时,跃迁到一个更高的能级;或者释放能量,跃迁到更低的能级的过程。如果起始能级的能量比最终能级的能量高,原子便会释放能量
- 化制淀粉化制淀粉,亦称修饰淀粉,或称改性淀粉、变性淀粉,是将源自谷粒或根部(如玉米、米、小麦、马铃薯……等)之天然淀粉,经过物理、酵素或以少量化学药品处理,改变其性质而得,以使淀粉正常
- 流行流行,原意为“易传播的”,它可以指:
- 左岸在法国巴黎地区,左岸(法语:La Rive Gauche,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Cod
- 城市美化运动城市美化运动(City Beautiful Movement)是1890年代和1900年代在北美洲达到繁荣的建筑和城市规划领域的进步主义改革运动,意图在城市进行美化,兴建宏伟的纪念碑式建筑。这一运动
- 牛津牛津(英语:Oxford,/ˈɒksfərd/,OKS-fərd),英国英格兰东南区域牛津郡的行政总部、非都市郡区和城市地位,为牛津大学-英语国家中历史最久的大学的发源地,其地名意义为Ox(牛)+Ford(较
- 中枢模式发生器中枢模式发生器Central pattern generators (CPGs)是一种不需要传感器反馈就能产生节律模式输出的神经网络。研究表明,即便缺少运动和传感器反馈,CPGs仍能产生有节律的输出并
- 磷酸脲磷酸脲,化学式CO(NH2)2·H3PO4。磷酸脲是一种无色透明棱柱状结晶,易溶于水,水溶液呈酸性,1%水溶液的pH为1.89;不溶于醚类、甲苯、四氯化碳和二