高斯光束

✍ dations ◷ 2025-06-07 19:21:30 #高斯光束
在光学中,高斯光束(英语:Gaussian beam)是横向电场以及辐照度分布近似满足高斯函数的电磁波光束。许多激光都近似满足高斯光束的条件,在这种情况中,激光在光谐振腔中以TEM00波模(横向基模)传播。当它在满足近衍射极限的镜片中发生折射时,高斯光束会变换成另一种不同参数的高斯光束,因此,高斯光束是激光光学中一种方便、广泛应用的模型。描述高斯光束的数学函数是亥姆霍兹方程的一个近轴近似解(属于小角近似的一种)。这个解具有高斯函数的形式,代表了光束中电场分量的复振幅。尽管电磁波的传播包括电场和磁场两部分,研究其中任一个场,就足以描述波在传播时的性质。高斯光束中,场的行为可以通过几个参数加以刻画,如光斑大小,曲率半径,古依相移等。亥姆霍兹方程的近轴近似解可能不止一个。笛卡尔坐标系下求解可得一类称为厄米-高斯模的解,在柱坐标中求解则得到一类称为拉盖尔-高斯模的解。对这两类解,最低阶都是高斯光束,高阶解则描述了光学谐振腔中的高阶横向模。高斯光束作为电磁波的横向电磁模,通过求解近轴亥姆霍兹公式,可得电场的振幅这里此外,上式中默认忽略了含时项 e i ω t {textstyle e^{iomega t}} 。对应的辐照度时域平均值为这里 I 0 = I ( 0 , 0 ) {displaystyle I_{0}=I(0,0)} 为光波束腰中心处的辐照度。常数 η {displaystyle eta ,} 为光波所在传播介质中的波阻抗(英语:Wave impedance)。在真空中, η = η 0 = μ 0 ε 0 = 1 / ( ε 0 c ) ≈ 376.7   Ω {displaystyle eta =eta _{0}={sqrt {frac {mu _{0}}{varepsilon _{0}}}}=1/(varepsilon _{0}c)approx 376.7 mathrm {Omega } } 。高斯光束的许多性质由一系列波束参数决定,下面将分别予以介绍。对于在自由空间传播的高斯光束,其腰斑(英语:spot size)位置的半径在光轴方向总大于一个最小值 w 0 {displaystyle w_{0}} ,这个最小值被称为束腰(beam waist)。波长为 λ {displaystyle lambda } 的光波的腰斑位置在 z {displaystyle z} 轴上的分布为这里将 z = 0 {displaystyle z=0} 定义为束腰的位置。被称为瑞利距离。与束腰轴向距离等于瑞利距离 z R {displaystyle z_{R}} 处的束宽为这两点之间的距离称作共焦参数或光束的焦深。R ( z ) {displaystyle R(z)} 是光束波前的曲率半径,它是轴向距离的函数当 z ≫ z R {displaystyle zgg z_{mathrm {R} }} ,参数 w ( z ) {displaystyle w(z)} 与 z {displaystyle z} 呈线性关系,趋近于一条直线。这条直线与中央光轴的夹角被称为光束的“偏移”,它等于在远离束腰的位置,光束弯散的总角度为由于这一性质,聚焦于一个小点的高斯激光在远离这个点的传播过程中迅速散开。为了保持激光的准直,激光束必须具有较大的直径。束宽和光束偏移的这一关系是由于衍射的缘故。非高斯光束同样会表现这一效应,但是高斯光束是一种特殊情况,其束宽和偏移的乘积是可能达到的最小值。由于高斯光束模型使用了近轴近似,当波前与光传播方向倾斜程度大于30度之后,这种模型将不再适用。通过上述偏移的表达式,这意味着高斯光束模型仅对束腰大于 2 λ / π {displaystyle 2lambda /pi } 的光束适用。激光束的质量可以用束参数乘积(英语:beam parameter product)(BBP)来衡量。对于高斯光束,BBP 的数值就是光束的偏移量与束腰 w 0 {displaystyle w_{0}} 的乘积。实际光束的 BPP 通过计算光束的最小直径和远场偏移量的乘积来获得。在波长一定的情况下,实际光束的 BPP 数值与理想激光束的 BPP 数值的比值被称为“M2”。高斯光束的 M2 值为1,而所有的是激光束的 M2 值均大于1,并且质量越好的激光的 M2 值越接近1。光束的轴向上的相位延迟,或称 Gouy 相位为当光束通过焦点时,除了正常情况下平面波的相移 e − i k z {displaystyle e^{-ikz}} 外,多出一个额外的 Gouy 相移 π {displaystyle pi } 。可以通过复数形式的光束参数 q ( z ) {displaystyle q(z)} 囊括光斑尺寸与曲率半径的信息,倒数 1 / q ( z ) {displaystyle 1/q(z)} 显式提供了 q ( z ) {displaystyle q(z)} , w ( z ) {displaystyle w(z)} 与 R ( z ) {displaystyle R(z)} 间的关系:1 q ( z ) = 1 z + i z R = z z 2 + z R 2 − i z R z 2 + z R 2 = 1 R ( z ) − i λ π w 2 ( z ) . {displaystyle {1 over q(z)}={1 over z+iz_{mathrm {R} }}={z over z^{2}+z_{mathrm {R} }^{2}}-i{z_{mathrm {R} } over z^{2}+z_{mathrm {R} }^{2}}={1 over R(z)}-i{lambda over pi w^{2}(z)}.}光束参数的复数形式在高斯光束传播的分析中有着重要地位,特别是当使用光线传递矩阵分析光谐振腔中光束传播。利用复数光束参数 q {displaystyle q} ,具有一个横向维度的高斯光束电磁场与下式成比例在二维的情况中,可以将散光的光束表达为乘积的形式对于圆对称的普遍情况, q x = q y = q {displaystyle {q}_{x}={q}_{y}={q}} 且 x 2 + y 2 = r 2 {displaystyle x^{2}+y^{2}=r^{2}} ,可以得出流经距离 z 轴半径为r的圆的功率为这里流经以 r = w ( z ) {displaystyle r=w(z),} 为半径的圆的能量占总能量的比值为类似的,占光波总能量约90%的部分将流经半径为 r = 1.07 ⋅ w ( z ) {displaystyle r=1.07cdot w(z),} 的圆形面积,总能量的95%通过 r = 1.224 ⋅ w ( z ) {displaystyle r=1.224cdot w(z),} 的圆形面积,总能量的99%会通过 r = 1.52 ⋅ w ( z ) {displaystyle r=1.52cdot w(z)} 的圆。在与束腰的轴向距离为 z {displaystyle z} 的位置,利用洛必达法则,可以计算该位置的辐射照度峰值可以看出,辐照度峰值为平均值的两倍,后者等于总能量除以半径为 w ( z ) {displaystyle w(z)} 的圆的面积。

相关

  • 小结小结,是日本大相扑力士中第七级,也是三役中最低一级。小结的字面意思是两个力士之间的对决。这个位置一般有东西两名(最多四人),也是前头级别力士所可直接昇进的最高位置。对于
  • 集块岩集块岩(英语:Agglomerate)是火山运动所产生的火成岩,通常为大型的火山物质的混合岩块,多见于火山活动的中心区域。它被定义为至少含75%的火山弹(Bomb)的岩石,通常为粗粒的混合质熔
  • 尚·嘉宾尚·嘉宾(Jean Gabin)是一位法国演员,曾主演许多经典电影。尚·嘉宾出生于巴黎,双亲是玛德莲·普蒂(Madeleine Petit)与费迪南·蒙柯吉(Ferdinand Moncorgé)。
  • 金矿金矿开采是指从富含金的地层中开采黄金的过程。目前有多种技术可以从地层中开采出黄金,最原始的方法是淘金。目前工业上多用氰化法提纯金,但氰化物有毒,因此正在开发新的提金试
  • 入门引言是写出作文章的目的,只是文章的开端。宜短,然后引入正题。引言是作为论文的引子,篇幅无需太多,除介绍题目的背景外,最重要的是必须表明立场。
  • 阿莲区阿莲区(西拉雅语:Alien;台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans
  • 直辖市山地原住民区直辖市山地原住民区是指中华民国的县改制为直辖市后,原本管辖的山地乡随之改制而成的地方自治团体,与自治区类似。由于直辖市之下的区依法并未拥有地方自治权,为解决山地乡改制
  • 中华人民共和国社会团体中华人民共和国社会团体是指在中华人民共和国境内登记注册的社会团体。据民政部2009年底的数据显示,中国共有社会组织43.1万个,吸纳就业人数544.7万人,固定资产达到1030亿元。
  • 北京官话北京官话可指:北京官话指官话方言的一支,共分四片:此外,若从创制源头来讲,现代标准汉语(华语,包括普通话、国语、新马华语)均属北京官话方言。根据张世方《北京官话语音研究》,冀鲁官
  • 鞘亚纲见内文蛸亚纲(学名:Coleoidea)是头足纲下的一类软体动物。它们不像鹦鹉螺亚纲般有硬壳,最多只有用来控制浮沉的内骨。一些物种甚至完全没有骨头,一些则以软骨来支撑。具有墨囊和