拉格朗日方程

✍ dations ◷ 2025-07-08 16:56:21 #拉格朗日方程
拉格朗日方程(Lagrange equation),因数学物理学家约瑟夫·拉格朗日而命名,是分析力学的重要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。假设一个物理系统符合完整系统的要求,即所有广义坐标都互相独立,则拉格朗日方程成立:其中, L ( q ,   q ˙ ,   t ) {displaystyle {mathcal {L}}(mathbf {q} , {dot {mathbf {q} }}, t),!} 是拉格朗日量, q = ( q 1 , q 2 , … , q N ) {displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),!} 是广义坐标,是时间 t {displaystyle t,!} 的函数, q ˙ = ( q ˙ 1 , q ˙ 2 , … , q ˙ N ) {displaystyle {dot {mathbf {q} }}=left({dot {q}}_{1},{dot {q}}_{2},ldots ,{dot {q}}_{N}right),!} 是广义速度。在分析力学里,有三种方法可以导引出拉格朗日方程。最原始的方法是使用达朗贝尔原理导引出拉格朗日方程(参阅达朗贝尔原理);更进阶层面,可以从哈密顿原理推导出拉格朗日方程(参阅哈密顿原理);最简明地,可以借用数学变分法的欧拉-拉格朗日方程来推导:设定函数 y ( x ) {displaystyle mathbf {y} (x),!} 和 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} :其中, x {displaystyle x,!} 是自变数(independent variable)。若 y ( x ) ∈ ( C 1 [ a ,   b ] ) N {displaystyle mathbf {y} (x)in (C^{1})^{N},!} 使泛函 J ( y ) = ∫ a b f ( y ,   y ˙ ,   x ) d x {displaystyle J(mathbf {y} )=int _{a}^{b}f(mathbf {y} , {dot {mathbf {y} }}, x)dx,!} 取得局部平稳值,则在区间 ( a ,   b ) {displaystyle (a, b),!} 内,欧拉-拉格朗日方程成立:现在,执行下述转换:则可得到拉格朗日方程一个不是完整系统的物理系统是非完整系统,不能用上述形式论来分析。假若,一个非完整系统的约束可以以方程表示为则称此系统为半完整系统。半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子 λ i {displaystyle lambda _{i},!} :其中, λ i = λ i ( q ,   q ˙ ,   t ) {displaystyle lambda _{i}=lambda _{i}(mathbf {q} , {dot {mathbf {q} }}, t),!} 是未知函数。由于这 N {displaystyle N,!} 个广义坐标中,有 n {displaystyle n,!} 个相依的广义坐标,泛函 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} 不能直接被转换为拉格朗日量 L {displaystyle {mathcal {L}},!} ;必须加入拉格朗日乘子,将泛函 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} 转换为 L + ∑ i = 1 n   λ i g i {displaystyle {mathcal {L}}+sum _{i=1}^{n} lambda _{i}g_{i},!} 。这样,可以得到拉格朗日广义力方程:其中, F {displaystyle {boldsymbol {mathcal {F}}},!} 是广义力, F = ∂ ∂ q ( ∑ i = 1 n   λ i g i ) − d d t [ ∂ ∂ q ˙ ( ∑ i = 1 n   λ i g i ) ] {displaystyle {boldsymbol {mathcal {F}}}={frac {partial }{partial mathbf {q} }}left(sum _{i=1}^{n} lambda _{i}g_{i}right)-{frac {d}{dt}}left,!} 。这 N {displaystyle N,!} 个广义力运动方程加上 n {displaystyle n,!} 个约束方程,给出 N + n {displaystyle N+n,!} 个方程来解 N {displaystyle N,!} 个未知广义坐标与 n {displaystyle n,!} 个拉格朗日乘子。这个段落会展示拉格朗日方程的两个应用实例。第一个实例展示出,用牛顿方法与拉格朗日方法所得的答案相同。第二个实例展示出拉格朗日方法的威力,因为这问题比较不适合用牛顿方法来分析。思考一个粒子从静止状态自由地下落。由于重力 F = m g {displaystyle F=mg,!} 作用于此粒子,应用牛顿第二定律,可以得到运动方程其中,x-坐标垂直于地面,由初始点(原点)往地面指。这个结果也可以从拉格朗日形式论得到。动能 T {displaystyle T,!} 是位势 V {displaystyle V,!} 是所以,拉格朗日量 L {displaystyle {mathcal {L}},!} 是将 L {displaystyle {mathcal {L}},!} 代入拉格朗日方程,运动方程是与牛顿方法的运动方程相同。思考一个简单摆系统。系统的x-轴平行于地面,y-轴垂直于x-轴,指向地面。摆锤P的质量是 m {displaystyle m,!} ,位置是 ( x ,   y ) {displaystyle (x, y),!} 。摆绳的长度是 l {displaystyle l,!} 。摆的支撑点Q的质量是 M {displaystyle M,!} 。这支撑点Q可以沿着一条平行于x-轴的直线移动。点Q的位置是 ( X ,   0 ) {displaystyle (X, 0),!} 。摆绳与y-轴的夹角是 θ {displaystyle theta ,!} 。那么,动能是位势为所以,拉格朗日量是两个约束方程为将约束方程代入拉格朗日量方程,特别注意,在这里,广义坐标是 X {displaystyle X,!} 与 θ {displaystyle theta ,!} 。应用拉格朗日方程,经过微分运算,对于 X {displaystyle X,!} 坐标,可以得到运动方程为由于拉格朗日量不显含广义坐标 X {displaystyle X,!} ,称 X {displaystyle X,!} 为可略坐标,而其相对应的广义动量 p X {displaystyle p_{X},!} 是常数 K 1 {displaystyle K_{1},!} :对于 θ {displaystyle theta ,!} 坐标,可以得到所以,运动方程为假如用牛顿第二定律,则必须仔细地辨明所有的相关作用力。这是一项既困难又容易出错的工作。

相关

  • 自闭症光谱自闭症谱系(英语:Autism spectrum)是一种心理状况的谱系障碍,亦称自闭症谱系障碍(英语:autism spectrum disorders,简写ASD;或autism spectrum conditions,简写ASC)或泛自闭症障碍,描述
  • 有效性在逻辑中,如果一个论证不能从真前提中得出假结论,则论证的形式是完全有效的。一个论证若被称为是有效的,则如果在其中所有前提都为真的每个模型中,结论也是真的。例如:“所有A是B
  • 神经质神经质(英语:neuroticism,又译为情绪不稳定性),是心理学研究中一个基本的人格特质。情绪不稳定性测验得分高的人比一般人更容易情绪化、情绪波动大、且更常有以下这些情绪:焦虑、
  • 滑面内质网内质网(英语:Endoplasmic reticulum, ER)是在真核生物细胞中由膜围成的隧道系统,为细胞中的重要细胞器。实际上内质网是膜被折叠成一个扁囊或细管状构造,可分为粗面内质网(Rough E
  • 机器人航天器机器人太空船,意即港台媒体所指的无人探测器,具有对天体研究、观测等自动化完成的功能,主要指行星探测器、行星着陆探测器等具有机器人特性的无人飞船,不包括阿波罗4号这样的载
  • 博奈尔岛面积以下资讯是以2015年估计家用电源国家领袖立国历史博奈尔(荷兰语:Bonaire)是加勒比海中一岛屿,现为荷兰的公共实体(英语:Public body (Netherlands)),与附近的荷兰王国构成国阿鲁
  • 350110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 瑞格列奈瑞格列奈(Repaglinide)是一种短效胰岛素促泌剂,用于饮食控制、减轻体重及运动锻炼不能有效控制其高血糖的2型糖尿病(非胰岛素依赖型)患者。剂量有白色片(0.5 mg)或黄色片(1.0 mg)或桃
  • 黑潮黑潮(日语:黒潮/くろしお kuroshio,英语:Kuroshio Current),又称日本暖流,是太平洋洋流的一环,为全球第二大洋流,只居于墨西哥湾暖流之后。自菲律宾开始,穿过台湾东部海域,沿着日本往东
  • 苯二氮䓬苯二氮䓬类药物(拉丁语:Benzodiazepines,BZDs、䓬/zhuó/),又译苯二氮平,是一种精神药物,其核心化学结构是一个苯环和一个䓬环。第一种此类药物是氯氮䓬(利眠宁),由Leo Sternbach在195