首页 >
拉格朗日方程
✍ dations ◷ 2025-04-03 11:20:47 #拉格朗日方程
拉格朗日方程(Lagrange equation),因数学物理学家约瑟夫·拉格朗日而命名,是分析力学的重要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。假设一个物理系统符合完整系统的要求,即所有广义坐标都互相独立,则拉格朗日方程成立:其中,
L
(
q
,
q
˙
,
t
)
{displaystyle {mathcal {L}}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是拉格朗日量,
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),!}
是广义坐标,是时间
t
{displaystyle t,!}
的函数,
q
˙
=
(
q
˙
1
,
q
˙
2
,
…
,
q
˙
N
)
{displaystyle {dot {mathbf {q} }}=left({dot {q}}_{1},{dot {q}}_{2},ldots ,{dot {q}}_{N}right),!}
是广义速度。在分析力学里,有三种方法可以导引出拉格朗日方程。最原始的方法是使用达朗贝尔原理导引出拉格朗日方程(参阅达朗贝尔原理);更进阶层面,可以从哈密顿原理推导出拉格朗日方程(参阅哈密顿原理);最简明地,可以借用数学变分法的欧拉-拉格朗日方程来推导:设定函数
y
(
x
)
{displaystyle mathbf {y} (x),!}
和
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
:其中,
x
{displaystyle x,!}
是自变数(independent variable)。若
y
(
x
)
∈
(
C
1
[
a
,
b
]
)
N
{displaystyle mathbf {y} (x)in (C^{1})^{N},!}
使泛函
J
(
y
)
=
∫
a
b
f
(
y
,
y
˙
,
x
)
d
x
{displaystyle J(mathbf {y} )=int _{a}^{b}f(mathbf {y} , {dot {mathbf {y} }}, x)dx,!}
取得局部平稳值,则在区间
(
a
,
b
)
{displaystyle (a, b),!}
内,欧拉-拉格朗日方程成立:现在,执行下述转换:则可得到拉格朗日方程一个不是完整系统的物理系统是非完整系统,不能用上述形式论来分析。假若,一个非完整系统的约束可以以方程表示为则称此系统为半完整系统。半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子
λ
i
{displaystyle lambda _{i},!}
:其中,
λ
i
=
λ
i
(
q
,
q
˙
,
t
)
{displaystyle lambda _{i}=lambda _{i}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是未知函数。由于这
N
{displaystyle N,!}
个广义坐标中,有
n
{displaystyle n,!}
个相依的广义坐标,泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
不能直接被转换为拉格朗日量
L
{displaystyle {mathcal {L}},!}
;必须加入拉格朗日乘子,将泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
转换为
L
+
∑
i
=
1
n
λ
i
g
i
{displaystyle {mathcal {L}}+sum _{i=1}^{n} lambda _{i}g_{i},!}
。这样,可以得到拉格朗日广义力方程:其中,
F
{displaystyle {boldsymbol {mathcal {F}}},!}
是广义力,
F
=
∂
∂
q
(
∑
i
=
1
n
λ
i
g
i
)
−
d
d
t
[
∂
∂
q
˙
(
∑
i
=
1
n
λ
i
g
i
)
]
{displaystyle {boldsymbol {mathcal {F}}}={frac {partial }{partial mathbf {q} }}left(sum _{i=1}^{n} lambda _{i}g_{i}right)-{frac {d}{dt}}left,!}
。这
N
{displaystyle N,!}
个广义力运动方程加上
n
{displaystyle n,!}
个约束方程,给出
N
+
n
{displaystyle N+n,!}
个方程来解
N
{displaystyle N,!}
个未知广义坐标与
n
{displaystyle n,!}
个拉格朗日乘子。这个段落会展示拉格朗日方程的两个应用实例。第一个实例展示出,用牛顿方法与拉格朗日方法所得的答案相同。第二个实例展示出拉格朗日方法的威力,因为这问题比较不适合用牛顿方法来分析。思考一个粒子从静止状态自由地下落。由于重力
F
=
m
g
{displaystyle F=mg,!}
作用于此粒子,应用牛顿第二定律,可以得到运动方程其中,x-坐标垂直于地面,由初始点(原点)往地面指。这个结果也可以从拉格朗日形式论得到。动能
T
{displaystyle T,!}
是位势
V
{displaystyle V,!}
是所以,拉格朗日量
L
{displaystyle {mathcal {L}},!}
是将
L
{displaystyle {mathcal {L}},!}
代入拉格朗日方程,运动方程是与牛顿方法的运动方程相同。思考一个简单摆系统。系统的x-轴平行于地面,y-轴垂直于x-轴,指向地面。摆锤P的质量是
m
{displaystyle m,!}
,位置是
(
x
,
y
)
{displaystyle (x, y),!}
。摆绳的长度是
l
{displaystyle l,!}
。摆的支撑点Q的质量是
M
{displaystyle M,!}
。这支撑点Q可以沿着一条平行于x-轴的直线移动。点Q的位置是
(
X
,
0
)
{displaystyle (X, 0),!}
。摆绳与y-轴的夹角是
θ
{displaystyle theta ,!}
。那么,动能是位势为所以,拉格朗日量是两个约束方程为将约束方程代入拉格朗日量方程,特别注意,在这里,广义坐标是
X
{displaystyle X,!}
与
θ
{displaystyle theta ,!}
。应用拉格朗日方程,经过微分运算,对于
X
{displaystyle X,!}
坐标,可以得到运动方程为由于拉格朗日量不显含广义坐标
X
{displaystyle X,!}
,称
X
{displaystyle X,!}
为可略坐标,而其相对应的广义动量
p
X
{displaystyle p_{X},!}
是常数
K
1
{displaystyle K_{1},!}
:对于
θ
{displaystyle theta ,!}
坐标,可以得到所以,运动方程为假如用牛顿第二定律,则必须仔细地辨明所有的相关作用力。这是一项既困难又容易出错的工作。
相关
- 根肿黑粉菌门根肿黑粉菌属 Entorrhiza Talbotiomyces根肿黑粉菌纲(学名:Entorrhizomycetes)是担子菌门黑粉菌亚门下的一个纲。该纲仅含一个目(根肿黑粉菌目,Entorrhizales),该目下也仅含一个科(
- 右心房心脏(英语:heart),常简称心,是一种在人类和其他动物都有的肌造器官,它的功用是推动循环系统中血管的血液。血液提供身体氧气以及养分,同时也协助身体移除代谢废弃物(英语:metabolic w
- 隶书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 伍兹霍尔海洋研究所伍兹霍尔海洋研究所(英文:Woods Hole Oceanographic Institution)是专注于海洋科学与海洋工程的非盈利私人研究和教学机构,成立于1930年,是美国最大的独立海洋学研究所,拥有教职员
- 系统减敏法系统脱敏法(英语:systematic desensitization),又称为渐进式暴露疗法(graduated exposure therapy),是一种认知行为疗法,由南非心理医生约瑟夫·沃尔普提出。系统脱敏法在临床心理学
- 水生生物水生生物包括:
- 加入联邦这是美国州份依加入联邦顺序排列列表(英语:list of U.S. states by date of statehood),即依照各个美国州份加入联邦的日期排序。虽说前13州,被认为从独立宣言(1776年7月4日)或批准
- 环[18]碳环碳或环十八-1,3,5,7,9,11,13,15,17-九炔是碳的同素异形体之一,化学式为C18,几乎不溶于水。它是一种环碳(英语:cyclocarbon)和多炔(英语:polyyne),由十八个碳原子以单叁键交替构成环
- 儿少未成年人(未成年者或未成人)是一个社会学或者法学的概念,即是还没有成年的人。在很多国家的法律上,未成年人即是未满法定成年年龄18岁的人。不同的社会或地区对未成年人在心理状
- 人机界面脑机接口(英语:brain-computer interface,简称BCI;有时也称作direct neural interface或者brain-machine interface),是在人或动物脑(或者脑细胞的培养物)与外部设备间创建的直接连