首页 >
拉格朗日方程
✍ dations ◷ 2025-04-03 17:18:41 #拉格朗日方程
拉格朗日方程(Lagrange equation),因数学物理学家约瑟夫·拉格朗日而命名,是分析力学的重要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。假设一个物理系统符合完整系统的要求,即所有广义坐标都互相独立,则拉格朗日方程成立:其中,
L
(
q
,
q
˙
,
t
)
{displaystyle {mathcal {L}}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是拉格朗日量,
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),!}
是广义坐标,是时间
t
{displaystyle t,!}
的函数,
q
˙
=
(
q
˙
1
,
q
˙
2
,
…
,
q
˙
N
)
{displaystyle {dot {mathbf {q} }}=left({dot {q}}_{1},{dot {q}}_{2},ldots ,{dot {q}}_{N}right),!}
是广义速度。在分析力学里,有三种方法可以导引出拉格朗日方程。最原始的方法是使用达朗贝尔原理导引出拉格朗日方程(参阅达朗贝尔原理);更进阶层面,可以从哈密顿原理推导出拉格朗日方程(参阅哈密顿原理);最简明地,可以借用数学变分法的欧拉-拉格朗日方程来推导:设定函数
y
(
x
)
{displaystyle mathbf {y} (x),!}
和
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
:其中,
x
{displaystyle x,!}
是自变数(independent variable)。若
y
(
x
)
∈
(
C
1
[
a
,
b
]
)
N
{displaystyle mathbf {y} (x)in (C^{1})^{N},!}
使泛函
J
(
y
)
=
∫
a
b
f
(
y
,
y
˙
,
x
)
d
x
{displaystyle J(mathbf {y} )=int _{a}^{b}f(mathbf {y} , {dot {mathbf {y} }}, x)dx,!}
取得局部平稳值,则在区间
(
a
,
b
)
{displaystyle (a, b),!}
内,欧拉-拉格朗日方程成立:现在,执行下述转换:则可得到拉格朗日方程一个不是完整系统的物理系统是非完整系统,不能用上述形式论来分析。假若,一个非完整系统的约束可以以方程表示为则称此系统为半完整系统。半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子
λ
i
{displaystyle lambda _{i},!}
:其中,
λ
i
=
λ
i
(
q
,
q
˙
,
t
)
{displaystyle lambda _{i}=lambda _{i}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是未知函数。由于这
N
{displaystyle N,!}
个广义坐标中,有
n
{displaystyle n,!}
个相依的广义坐标,泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
不能直接被转换为拉格朗日量
L
{displaystyle {mathcal {L}},!}
;必须加入拉格朗日乘子,将泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
转换为
L
+
∑
i
=
1
n
λ
i
g
i
{displaystyle {mathcal {L}}+sum _{i=1}^{n} lambda _{i}g_{i},!}
。这样,可以得到拉格朗日广义力方程:其中,
F
{displaystyle {boldsymbol {mathcal {F}}},!}
是广义力,
F
=
∂
∂
q
(
∑
i
=
1
n
λ
i
g
i
)
−
d
d
t
[
∂
∂
q
˙
(
∑
i
=
1
n
λ
i
g
i
)
]
{displaystyle {boldsymbol {mathcal {F}}}={frac {partial }{partial mathbf {q} }}left(sum _{i=1}^{n} lambda _{i}g_{i}right)-{frac {d}{dt}}left,!}
。这
N
{displaystyle N,!}
个广义力运动方程加上
n
{displaystyle n,!}
个约束方程,给出
N
+
n
{displaystyle N+n,!}
个方程来解
N
{displaystyle N,!}
个未知广义坐标与
n
{displaystyle n,!}
个拉格朗日乘子。这个段落会展示拉格朗日方程的两个应用实例。第一个实例展示出,用牛顿方法与拉格朗日方法所得的答案相同。第二个实例展示出拉格朗日方法的威力,因为这问题比较不适合用牛顿方法来分析。思考一个粒子从静止状态自由地下落。由于重力
F
=
m
g
{displaystyle F=mg,!}
作用于此粒子,应用牛顿第二定律,可以得到运动方程其中,x-坐标垂直于地面,由初始点(原点)往地面指。这个结果也可以从拉格朗日形式论得到。动能
T
{displaystyle T,!}
是位势
V
{displaystyle V,!}
是所以,拉格朗日量
L
{displaystyle {mathcal {L}},!}
是将
L
{displaystyle {mathcal {L}},!}
代入拉格朗日方程,运动方程是与牛顿方法的运动方程相同。思考一个简单摆系统。系统的x-轴平行于地面,y-轴垂直于x-轴,指向地面。摆锤P的质量是
m
{displaystyle m,!}
,位置是
(
x
,
y
)
{displaystyle (x, y),!}
。摆绳的长度是
l
{displaystyle l,!}
。摆的支撑点Q的质量是
M
{displaystyle M,!}
。这支撑点Q可以沿着一条平行于x-轴的直线移动。点Q的位置是
(
X
,
0
)
{displaystyle (X, 0),!}
。摆绳与y-轴的夹角是
θ
{displaystyle theta ,!}
。那么,动能是位势为所以,拉格朗日量是两个约束方程为将约束方程代入拉格朗日量方程,特别注意,在这里,广义坐标是
X
{displaystyle X,!}
与
θ
{displaystyle theta ,!}
。应用拉格朗日方程,经过微分运算,对于
X
{displaystyle X,!}
坐标,可以得到运动方程为由于拉格朗日量不显含广义坐标
X
{displaystyle X,!}
,称
X
{displaystyle X,!}
为可略坐标,而其相对应的广义动量
p
X
{displaystyle p_{X},!}
是常数
K
1
{displaystyle K_{1},!}
:对于
θ
{displaystyle theta ,!}
坐标,可以得到所以,运动方程为假如用牛顿第二定律,则必须仔细地辨明所有的相关作用力。这是一项既困难又容易出错的工作。
相关
- 粘膜相关淋巴组织黏膜相关淋巴组织(Mucosa-associated lymphoid tissue,简称MALT),位于消化道、呼吸道、泌尿生殖道等人体各种黏膜组织中,由黏膜表皮细胞下方的淋巴小结以及表皮细胞之间的微皱褶
- 助孕素孕酮(英语:progesterone,亦被称为黄体酮、孕甾酮、黄体甾酮、助孕激素、助孕素、黄体素或助孕酮,其缩写为P4,也被称为(孕甾-4-烯-3,20-二酮),是一种内源性类固醇和孕激素性激素,也
- 易怒应激性(英语:irritability)是指在新陈代谢的基础上,生物体对外界刺激都能产生一定的反应。植物的根能够向地生长,是植物对重力的刺激的反应。如果把植物放到失重环境,则根不会出现
- 威拉米特河威拉米特河(Willamette River),源出美国喀斯喀特山脉,由Coast河(Coast)和Middle河(Middle)等河汇合而成,流经俄勒冈州西南部。在波特兰(Portland)西北注入哥伦比亚河。长约480公里,沿河
- 凯尔特布立吞人凯尔特布立吞人(英文:Celtic Britons;或古代布立吞人,英文:Ancient Britons)是一个古代凯尔特人的分支,存在于英国的从铁器时代直至到罗马时期和后罗马时期。他们居住于不列颠岛福
- 穆勒保罗·赫尔曼·穆勒(德语:Paul Hermann Müller,1899年1月12日出生于瑞士索洛图恩州奥尔坦,1965年12月12日逝世于巴塞尔)是一位瑞士化学家。1939年秋,他发现了DDT的杀虫功效,因此在
- 人造钻石合成钻石或称人造钻石,即透过技术加工制成的钻石,对比于地质作用自然形成的天然钻石。合成钻石也广泛被称作HPHT钻石和CVD钻石,分别表示它的加工方式:高温高压(High-Pressure Hig
- 马拉松马拉松(英语:marathon)是一项考验耐力的长跑运动,一般指全程马拉松。这项运动的名称来自公元前490年古希腊时代雅典与波斯之间的马拉松战役。相传希腊在这场战役中击败波斯军队,
- 北国以色列以色列王国(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
- BuzzFeedBuzzFeed是一间美国的网络新闻媒体公司,由乔纳·派瑞提(Jonah Peretti)于2006年在纽约市成立。公司最初是一间研究网络热门话题的实验室(viral lab),如今已成为全球性的媒体和科技