拉格朗日方程

✍ dations ◷ 2025-04-03 11:20:47 #拉格朗日方程
拉格朗日方程(Lagrange equation),因数学物理学家约瑟夫·拉格朗日而命名,是分析力学的重要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。假设一个物理系统符合完整系统的要求,即所有广义坐标都互相独立,则拉格朗日方程成立:其中, L ( q ,   q ˙ ,   t ) {displaystyle {mathcal {L}}(mathbf {q} , {dot {mathbf {q} }}, t),!} 是拉格朗日量, q = ( q 1 , q 2 , … , q N ) {displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),!} 是广义坐标,是时间 t {displaystyle t,!} 的函数, q ˙ = ( q ˙ 1 , q ˙ 2 , … , q ˙ N ) {displaystyle {dot {mathbf {q} }}=left({dot {q}}_{1},{dot {q}}_{2},ldots ,{dot {q}}_{N}right),!} 是广义速度。在分析力学里,有三种方法可以导引出拉格朗日方程。最原始的方法是使用达朗贝尔原理导引出拉格朗日方程(参阅达朗贝尔原理);更进阶层面,可以从哈密顿原理推导出拉格朗日方程(参阅哈密顿原理);最简明地,可以借用数学变分法的欧拉-拉格朗日方程来推导:设定函数 y ( x ) {displaystyle mathbf {y} (x),!} 和 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} :其中, x {displaystyle x,!} 是自变数(independent variable)。若 y ( x ) ∈ ( C 1 [ a ,   b ] ) N {displaystyle mathbf {y} (x)in (C^{1})^{N},!} 使泛函 J ( y ) = ∫ a b f ( y ,   y ˙ ,   x ) d x {displaystyle J(mathbf {y} )=int _{a}^{b}f(mathbf {y} , {dot {mathbf {y} }}, x)dx,!} 取得局部平稳值,则在区间 ( a ,   b ) {displaystyle (a, b),!} 内,欧拉-拉格朗日方程成立:现在,执行下述转换:则可得到拉格朗日方程一个不是完整系统的物理系统是非完整系统,不能用上述形式论来分析。假若,一个非完整系统的约束可以以方程表示为则称此系统为半完整系统。半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子 λ i {displaystyle lambda _{i},!} :其中, λ i = λ i ( q ,   q ˙ ,   t ) {displaystyle lambda _{i}=lambda _{i}(mathbf {q} , {dot {mathbf {q} }}, t),!} 是未知函数。由于这 N {displaystyle N,!} 个广义坐标中,有 n {displaystyle n,!} 个相依的广义坐标,泛函 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} 不能直接被转换为拉格朗日量 L {displaystyle {mathcal {L}},!} ;必须加入拉格朗日乘子,将泛函 f ( y ,   y ˙ ,   x ) {displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!} 转换为 L + ∑ i = 1 n   λ i g i {displaystyle {mathcal {L}}+sum _{i=1}^{n} lambda _{i}g_{i},!} 。这样,可以得到拉格朗日广义力方程:其中, F {displaystyle {boldsymbol {mathcal {F}}},!} 是广义力, F = ∂ ∂ q ( ∑ i = 1 n   λ i g i ) − d d t [ ∂ ∂ q ˙ ( ∑ i = 1 n   λ i g i ) ] {displaystyle {boldsymbol {mathcal {F}}}={frac {partial }{partial mathbf {q} }}left(sum _{i=1}^{n} lambda _{i}g_{i}right)-{frac {d}{dt}}left,!} 。这 N {displaystyle N,!} 个广义力运动方程加上 n {displaystyle n,!} 个约束方程,给出 N + n {displaystyle N+n,!} 个方程来解 N {displaystyle N,!} 个未知广义坐标与 n {displaystyle n,!} 个拉格朗日乘子。这个段落会展示拉格朗日方程的两个应用实例。第一个实例展示出,用牛顿方法与拉格朗日方法所得的答案相同。第二个实例展示出拉格朗日方法的威力,因为这问题比较不适合用牛顿方法来分析。思考一个粒子从静止状态自由地下落。由于重力 F = m g {displaystyle F=mg,!} 作用于此粒子,应用牛顿第二定律,可以得到运动方程其中,x-坐标垂直于地面,由初始点(原点)往地面指。这个结果也可以从拉格朗日形式论得到。动能 T {displaystyle T,!} 是位势 V {displaystyle V,!} 是所以,拉格朗日量 L {displaystyle {mathcal {L}},!} 是将 L {displaystyle {mathcal {L}},!} 代入拉格朗日方程,运动方程是与牛顿方法的运动方程相同。思考一个简单摆系统。系统的x-轴平行于地面,y-轴垂直于x-轴,指向地面。摆锤P的质量是 m {displaystyle m,!} ,位置是 ( x ,   y ) {displaystyle (x, y),!} 。摆绳的长度是 l {displaystyle l,!} 。摆的支撑点Q的质量是 M {displaystyle M,!} 。这支撑点Q可以沿着一条平行于x-轴的直线移动。点Q的位置是 ( X ,   0 ) {displaystyle (X, 0),!} 。摆绳与y-轴的夹角是 θ {displaystyle theta ,!} 。那么,动能是位势为所以,拉格朗日量是两个约束方程为将约束方程代入拉格朗日量方程,特别注意,在这里,广义坐标是 X {displaystyle X,!} 与 θ {displaystyle theta ,!} 。应用拉格朗日方程,经过微分运算,对于 X {displaystyle X,!} 坐标,可以得到运动方程为由于拉格朗日量不显含广义坐标 X {displaystyle X,!} ,称 X {displaystyle X,!} 为可略坐标,而其相对应的广义动量 p X {displaystyle p_{X},!} 是常数 K 1 {displaystyle K_{1},!} :对于 θ {displaystyle theta ,!} 坐标,可以得到所以,运动方程为假如用牛顿第二定律,则必须仔细地辨明所有的相关作用力。这是一项既困难又容易出错的工作。

相关

  • 根肿黑粉菌门根肿黑粉菌属 Entorrhiza Talbotiomyces根肿黑粉菌纲(学名:Entorrhizomycetes)是担子菌门黑粉菌亚门下的一个纲。该纲仅含一个目(根肿黑粉菌目,Entorrhizales),该目下也仅含一个科(
  • 右心房心脏(英语:heart),常简称心,是一种在人类和其他动物都有的肌造器官,它的功用是推动循环系统中血管的血液。血液提供身体氧气以及养分,同时也协助身体移除代谢废弃物(英语:metabolic w
  • 隶书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 伍兹霍尔海洋研究所伍兹霍尔海洋研究所(英文:Woods Hole Oceanographic Institution)是专注于海洋科学与海洋工程的非盈利私人研究和教学机构,成立于1930年,是美国最大的独立海洋学研究所,拥有教职员
  • 系统减敏法系统脱敏法(英语:systematic desensitization),又称为渐进式暴露疗法(graduated exposure therapy),是一种认知行为疗法,由南非心理医生约瑟夫·沃尔普提出。系统脱敏法在临床心理学
  • 水生生物水生生物包括:
  • 加入联邦这是美国州份依加入联邦顺序排列列表(英语:list of U.S. states by date of statehood),即依照各个美国州份加入联邦的日期排序。虽说前13州,被认为从独立宣言(1776年7月4日)或批准
  • 环[18]碳环碳或环十八-1,3,5,7,9,11,13,15,17-九炔是碳的同素异形体之一,化学式为C18,几乎不溶于水。它是一种环碳(英语:cyclocarbon)和多炔(英语:polyyne),由十八个碳原子以单叁键交替构成环
  • 儿少未成年人(未成年者或未成人)是一个社会学或者法学的概念,即是还没有成年的人。在很多国家的法律上,未成年人即是未满法定成年年龄18岁的人。不同的社会或地区对未成年人在心理状
  • 人机界面脑机接口(英语:brain-computer interface,简称BCI;有时也称作direct neural interface或者brain-machine interface),是在人或动物脑(或者脑细胞的培养物)与外部设备间创建的直接连