闵可夫斯基图

✍ dations ◷ 2025-08-01 04:24:53 #狭义相对论,图表

时空图,又称闵可夫斯基图,用以表示闵可夫斯基时空的事件的坐标。它是一种理解狭义相对论现象的工具。

在四维的坐标系,以时间乘以光速(ct)为其中一轴,称之为时间轴;其他的x轴、y轴、z轴,称之为空间轴。在这四维时空上的每一点,都代表一个事件E。对应特定的惯性参考系,E发生的时间和地点(ct,x,y,z)。

每个质点在时空的活动都可以在时空图上以连续的曲线表示,称为世界线。

例如,在直角坐标系上,若质点均速运动, x ( t ) = v t {\displaystyle x(t)=vt} ,它的世界线便是一条穿过原点、斜率为 v / c {\displaystyle v/c} 的直线(斜率是关于时间轴ct轴的,而非x轴)。若质点是简谐运动, x ( t ) = sin ω t {\displaystyle x(t)=\sin \omega t} ,它的世界线便会一条沿时间轴变化的正弦曲线。

(为了方便在平面上表示,下面的闵可夫斯基图多数只有时间轴和一条空间轴x轴。)

对应惯性参考系O,它在一闵可夫斯基图为直角坐标系。若另一个惯性参考系O'对应O以均速 u {\displaystyle u} 沿x方向行进,则有惯性坐标系O',x'轴跟x轴的夹角等于 c t {\displaystyle ct'} 轴和 c t {\displaystyle ct} 轴的夹角,夹角 α = arctan ( u / c ) {\displaystyle \alpha =\arctan(u/c)}

若事件E在直角坐标系O的坐标为(ct, x),量度E在O'的坐标时,长度需除以 1 + β 2 1 β 2 {\displaystyle {\sqrt {\frac {1+\beta ^{2}}{1-\beta ^{2}}}}} 。这个长度的变化是因为两个坐标系固有时的不同。

若有一道光经过(0,0,0,0),它所有可能的世界线是两个圆锥面,圆锥的顶角是90°,一个在 c t 0 {\displaystyle ct\leq 0} (未来),另一个在 c t 0 {\displaystyle ct\geq 0} (过去),称为光锥。圆锥面将平面分成五部分


考察一条原长为L的木棒,在闵可夫斯基图画出棒端和棒末的轨迹。两点的轨迹是平行直线。

从图中可见,若观察者A与棒之间有相对速度,A量度棒的长度,从一个与棒相对速度为0的观察者的惯性系(即棒的体惯性系)看来,对方量度棒端和棒末的时间不同。经过计算(要记得在不同惯性系在图中的单位长度不同),便可知道棒的长度,在体惯性系量度得的长度是最大,其他惯性系的观察者都会量得L' < L,即有空间收缩。

时空图的其他应用可参见双生子佯谬。

相关

  • 加夫里洛·普林西普加夫里洛·普林西波(塞尔维亚语:Гаврило Принцип;拉丁化:Gavrilo Princip,1894年7月25日-1918年4月28日),波斯尼亚人,塞尔维亚民族主义者。经过两个月的预谋,1914年6月2
  • 资料数据(英语:data),是指未经过处理的原始记录。一般而言,数据缺乏组织及分类,无法明确的表达事物代表的意义,它可能是一堆杂志、一叠报纸、数种开会记录或是整本病人的病历纪录。数据
  • 阿尔伯特·克劳德阿尔伯特·克劳德(德语:Albert Claude,1899年8月24日-1983年5月22日),比利时生物学家,1974年因为对细胞构造的研究,而与他的学生克里斯汀·德·迪夫及乔治·帕拉德共同获得诺贝尔生
  • 帕陀氏症巴陶氏症候群(Patau syndrome),又称13-三体症候群,染色体三倍体症之一,少见,患者多在出生后一年内死亡。13-三体症候群早在1657年便由丹麦医学家托马斯·巴托林发现,但其染色体性质
  • 崇祯帝明思宗朱由检(1611年2月6日-1644年4月25日),或称崇祯帝,明朝第17代、末代皇帝。思宗为明光宗第五子,明熹宗异母弟。五岁时,其母刘氏获罪,被时为太子的光宗下令杖杀,朱由检交由庶母西
  • 盾臂龟苏卡达象龟(学名:Centrochelys sulcata)又名非洲盾臂龟、盾臂龟及苏卡塔尔陆龟,原为象龟属,之后被分入Centrochelys属,目前是Centrochelys属下的唯一现存的物种。原产于非洲的撒哈
  • 利珀亲王国利珀亲王国(Lippe-Detmold)是德国历史上的一个国家。首都设在德特摩德。利珀建国于1123年。1871年,利珀加入德意志帝国。1918年,亲王退位,利珀改为利珀自由邦。利珀如今是北莱茵-
  • 4colors《4colors》是韩国女子音乐组合MAMAMOO第一张日语正规专辑,由VICTOR ENTERAINMENT于2019年8月7日发行。为了纪念此次日本正规专辑的发行,MAMAMOO决定于7月31日先发行《gogobeb
  • 周以栗周以栗可以指:
  • 姿三四郎 (电影)电影《姿三四郎》(日语:すがたさんしろう)乃根据日本小说家富田常雄长篇小说《姿三四郎》改编拍摄,由于此小说曾数度被拍成电影和电视剧,本条目主要说明知名导演黑泽明在1943年(昭