数学构成主义

✍ dations ◷ 2025-11-14 12:00:32 #数学哲学

在数学哲学中,构成主义或构造主义认为要证明一个数学对象存在就必须把它构造出来。如果假设一个对象不存在,并从该假设推导出一个矛盾,对于构成主义者来说,不足以证明该对象存在。(构造性证明)

构成主义常常和直觉主义混淆,实际上,直觉主义只是构成主义的一种。直觉主义强调数学的基础建立在数学家们个人的直觉上,这样就把数学在本质上作为一种主观活动。构成主义不这样强调,并和对数学的客观看法保持一致。

构造主义者的数学使用构造性逻辑,该逻辑将真实性和证明等同起来。要构造性的证明 P Q {\displaystyle P\lor Q} ,我们必须证明 P {\displaystyle P} Q {\displaystyle Q} ,或两者同时成立。要构造式的证明 x X P ( x ) {\displaystyle \exists _{x\in X}P(x)} ,我们必须给出一个特定的 a X {\displaystyle a\in X} 和一个 P ( a ) {\displaystyle P(a)} 的证明。要构造式的证明 x X P ( x ) {\displaystyle \forall _{x\in X}P(x)} ,我们必须给出一个算法,它对于每个 a X {\displaystyle a\in X} 输出一个 P ( a ) {\displaystyle P(a)} 的证明。

构造主义同时拒绝采用无穷对象,例如无穷集合和序列。

在经典实分析中,实数构造的方法之一是把它作为有理数的柯西列对。这个构造在构造主义数学中不成立,因为序列是无穷的。

作为替换,我们把实数表示为一个算法 f {\displaystyle f} ,它取一个正整数 n {\displaystyle n} 然后输出一对有理数 ( f ( n ) , f r ( n ) ) {\displaystyle (f_{\ell }(n),f_{r}(n))} 使得

使得当 n {\displaystyle n} 增大,区间 {\displaystyle } 变小,而前 n {\displaystyle n} 个这种区间的交不空。我们使用 f {\displaystyle f} 来计算它所表示的实数的任何精度的有理数近似。

在这个定义下,实数 2 {\displaystyle {\sqrt {2}}} 可以用一个算法表示,它对于每个 0 i n {\displaystyle 0\leq i\leq n} 计算出最大的整数 a i {\displaystyle a_{i}} 使得 a i 2 2 i 2 {\displaystyle a_{i}^{2}\leq 2i^{2}} 然后输出 ( m a x { a i i } , m i n { a i + 1 i } ) {\displaystyle \left(\mathrm {max} \left\{{a_{i} \over i}\right\},\mathrm {min} \left\{{a_{i}+1 \over i}\right\}\right)}

这个定义和采用柯西列的经典定义相关,除了要求序列是构造式的:也就是说,我们有个计算第 n {\displaystyle n} 个序列中的元素的算法,所以有一个计算任意精确的对 2 {\displaystyle {\sqrt {2}}} 的有理数近似的算法。

注意构造性要求使得上述定义和通常非构造主义的实数定义不相容:因为每个算法 ξ {\displaystyle \xi } 必须是一个有限指令集 Σ {\displaystyle \Sigma } 上的有限序列,存在一个双射函数 f : Σ N {\displaystyle f:\Sigma ^{*}\rightarrow \mathbb {N} } 。所以所有算法的集合和所有自然数的集合有同样的基数。当使用一个非构造式的定义时,康托对角线论证证明实数比自然数有更高的基数。

传统上,数学家对于数学构造主义曾经持怀疑态度,如果不是完全反对的话,很大程度上这是因为它对构造分析的限制.

这些观点希尔伯特在1928年曾有强烈表示.他在《数学基础》(Die Grundlagen der Mathematik)写道:“把排中律从数学家那里拿走,就像把望远镜从天文学家那里拿走,或是从拳击手那里把拳头拿走一样”(排中律在构造性逻辑中不成立)。

Errett Bishop(英语:Errett Bishop),在他1967年的著作《构造性分析学基础》(Foundations of Constructive Analysis)中,作了很多驱散这种恐怖,他的办法是用构造性的框架中发展出传统的分析学的大部分.

但是,不是所有数学家都认为Bishop非常成功,因为的他的书必须比经典分析教科书更复杂.

无论如何,多数数学家不认为应该把自己限制到构造主义方式,甚至当可以这样做时。

相关

  • 自养自养生物,也称为生产者(producer,autotroph),在台湾称为自营生物,主要包括绿色植物和少数微生物,它们可以利用阳光、空气中的二氧化碳、水以及土壤中的无机盐等,通过光合作用或化能
  • 细菌性肠胃炎肠胃炎是以胃和小肠炎症为特征的胃肠道病症,可导致腹泻、呕吐、腹部的疼痛和绞痛合并而成疾病表现。虽然与流感并无关系,但该病也被称为肠胃型感冒和消化道流感。肠胃炎通常是
  • 二氧化氯二氧化氯是黄绿色的气体,是氯的最稳定的氧化物,也是唯一大量生产的卤氧化物。二氧化氯在其液态时稳定,但若和一些特定物质接触,也有爆炸的可能。 它在约−59°C 时凝结成亮橙色
  • 谷部,为汉字索引中的部首之一,康熙字典214个部首中的第一百五十个(七划的则为第四个)。就繁体和简体中文中,谷部归于七划部首。谷部通常从左方、右方为部字。且无其他部首可用者
  • 5f7 6d1 7s22, 8, 18, 32, 25, 9, 2蒸气压主条目:锔的同位素锔(Curium)是一种放射性超铀元素,符号为Cm,原子序为96,属于锕系元素,以研究放射性的科学家玛丽·居里(Marie Curie)和其丈
  • 沃尔特·雅各布·格林沃尔特·雅各布·格林(德语:Walter Jakob Gehring,1939年3月20日-2014年5月29日),瑞士发育生物学教授,他曾经在巴塞尔大学担任教授。1965年,在苏黎世大学获得博士学位。2年后在耶鲁
  • 潘永信潘永信(1964年5月-),山西省运城市人,中国地球物理学家,中国科学院地质与地球物理所研究员,中国科学院院士。潘永信1985年毕业于武汉地质学院,1988年于中国地质大学获硕士学位,1998年
  • 丁 林丁林(1965年7月-),生于安徽萧县,中国科学院青藏高原研究所研究员,中国科学院院士。主要从事青藏高原地质学研究。1988年,毕业于北京大学地质学系,获构造与地质力学专业学士学位。199
  • 自杀防治专线列表此列表记录全球各地的自杀防治专线,依国家/地区划分。列表内的电话可为遭遇情绪危机和有自杀倾向的人提供援助。收录入此列表的自杀防治专线必须:
  • 圣安东尼奥国际机场圣安东尼奥国际机场(英语:San Antonio International Airport,IATA代码:SAT;ICAO代码:KSAT;FAA代码:SAT)是一座商用机场,位于住宅区的中央圣安东尼奥,德克萨斯州,美国,距离北部市区约八公