张量积

✍ dations ◷ 2025-11-26 11:15:04 #二元运算,张量,多重线性代数,双线性算子

在数学中,张量积,记为 {\displaystyle \otimes } 和 是秩分别为 和 的两个协变张量,则它们的张量积的分量给出为

所以两个张量的张量积的分量是每个张量的分量的普通积。

注意在张量积中,因子 消耗第一个 rank() 指标,而因子 消耗下一个 rank() 指标,所以

设 U 是类型 (1,1) 的张量,带有分量 ;并设 V 是类型 (1,0) 的张量,带有分量 。则

张量积继承它的因子的所有指标。

对于矩阵这个运算通常叫做克罗内克积,用来明确结果有特定块结构在其上,其中第一个矩阵的每个元素被替代为这个元素与第二个矩阵的积。对于矩阵 U {\displaystyle U} 和 的张量积 V W {\displaystyle V\otimes W} 和 基 { v i } {\displaystyle \{v_{i}\}} 把笛卡尔积 × 嵌入到向量空间 的问题。张量积构造 ⊗ 与给出自

的自然嵌入映射  : × → ⊗ 一起是这个问题在如下意义上的“泛”解。对于任何其他这种对(, ),这里的 是向量空间,而 ψ 是双线性映射 × → ,则存在一个唯一的线性映射

使得

假定这个泛性质,张量积在同构意义下的惟一性是容易验证的。

直接推论是从 × 到 的双线性映射

和线性映射

的同一性。它是 到 的自然同构映射。

两个希尔伯特空间的张量积是另一个希尔伯特空间,其定义如下。

H 1 {\displaystyle H_{1}} 12 的张量积 H 1 ^ H 2 {\displaystyle H_{1}{\hat {\otimes }}H_{2}} 12作为希尔伯特空间的张量积。在希尔伯特空间的范畴中, H 1 ^ H 2 {\displaystyle H_{1}{\hat {\otimes }}H_{2}} 12 分别有正交基 {φ} 和 {ψ},则 {φ ⊗ ψ} 是 1 ⊗ 2 的正交基。

在泛性质的讨论中,替代 为 和 的底层标量域生成空间 ( V W ) {\displaystyle (V\otimes W)^{\star }} V W {\displaystyle V\otimes W} 的对偶空间,包含在那个空间上的所有线性泛函),它自然的同一于在 V × W {\displaystyle V\times W} 上所有双线性函数的空间。换句或说,所有双线性泛函是在张量积上的泛函,反之亦然。

只要 V {\displaystyle V} W {\displaystyle W} 是有限维的,在 V W {\displaystyle V^{\star }\otimes W^{\star }} ( V W ) {\displaystyle (V\otimes W)^{\star }} 之间有一个自然的同构,而对于任意维的向量空间我们只有一个包含 V W ( V W ) {\displaystyle V^{\star }\otimes W^{\star }\subset (V\otimes W)^{\star }} 。所以线性泛函的张量是双线性泛函。这给我们一种新看法,把双线性泛函看做张量积自身。

相关

  • 以色列地以色列地,亦即是迦南地,大致对应于由南地中海东部包围的区域的名字。圣经中,宗教和历史的术语包括迦南地,应许之地,圣地,相当于今日的巴勒斯坦地区。这一领土的界限的定义圣经章节
  • 原口类动物原口动物(学名:拉丁语:Protostomia),又名前口动物或旧口动物,有完整的消化道。胚胎时期的原口会发展为成体的口,而肛门则是另外形成的。蜕皮动物(Ecdysozoa)和螺旋动物(Spiralia)都属于
  • 正态分布正态分布(英语:normal distribution)又名高斯分布(英语:Gaussian distribution),是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明
  • 不饱和不饱和化合物指含有烯键(C=C键)或炔键(C≡C键)的化合物,与饱和化合物相对。最常见的饱和化合物是烷烃,常见的不饱和化合物包括烯烃和炔烃,具体的例子如乙烯酮、烯丙醇、丙烯醛、乙
  • 格洛斯特郡格洛斯特郡(英语:Gloucestershire,读音:/'.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","G
  • 有噪信道编码定理在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为
  • 内外术经《内外术经》,古医书名,已佚,传说为岐伯有作《内外术经》十八卷。内外当指内科、外科。
  • 向近敏向近敏(1914年1月28日-2006年12月31日),中国医学病毒学家,医学教育学家,社会活动家。1913年生于湖北汉川。1978年至1986年任湖北医学院(今武汉大学医学部)教授、病毒研究所所长。200
  • 马尔科姆·格拉德威尔麦尔坎·提摩西·格拉德威尔(Malcolm Timothy Gladwell,1963年9月3日-)目前是《纽约客》杂志撰稿人及畅销作家。他自1996年起为纽约客杂志执笔,2011年,格拉德威尔被授予加拿大最高
  • 邮贮杯 (日本围棋)邮贮杯 围棋锦标赛~中野孝次纪念(日语:ゆうちょ杯 囲碁ユース選手権~中野孝次メモリアル),由日本棋院主办,朝日新闻社特别协办,关西棋院协办,邮贮银行赞助,创办于2014年,专为未满20歳并