LQR控制器

✍ dations ◷ 2025-11-16 13:16:04 #最佳控制

最优控制理论主要探讨的是让动力系统以在最小成本来运作,若系统动态可以用一组线性微分方程表示,而其成本为二次泛函,这类的问题称为线性二次(LQ)问题。此类问题的解即为线性二次调节器(英语:linear–quadratic regulator),简称LQR。

LQR是回授控制器,方程式在后面会提到。LQR是LQG(线性二次高斯)问题解当中重要的一部分。而LQG问题和LQR问题都是控制理论中最基础的问题之一。

控制机器(例如飞机)的控制器,或是控制制程(例如化学反应)的控制器,可以进行最佳控制,方式是先设定成本函数,再由工程师设定加权,利用数学算法来找到使成本函数最小化的设定值。成本函数一般会定义为主要量测量(例如飞行高度或是制程温度)和理想值的偏差的和。算法会设法调整参数,让这些不希望出现的偏差降到最小。而控制量的大小本身也会包括在成本函数中。

LQR算法减少了工程师为了让控制器最佳化,而需付出的心力。不过工程师仍然要列出成本函数的相关参数,并且将结果和理想的设计目标比较。因此控制器的建构常会是迭代的,工程师在模拟过程中决定最佳控制器,再去调整参数让结果更接近设计目标。

在本质上,LQR算法是找寻合适状态回授控制器的自动化方式。因此也常会有控制工程师用其他替代方式,例如全状态回授(也称为极点安置)的作法,此作法对控制器参数和控制器性能之间的关系比较明确。而LQR算法的困难之处在找合适的加权因子,这也限制了以LQR控制器合成的相关应用。

方程式如下的连续时间线性系统, t {\displaystyle t\in }

其二次成本泛函为

其中F、Q和R都是正定矩阵。

可以让成本最小化的回授控制律为

其中 K {\displaystyle K}

P {\displaystyle P} 是连续时间Riccati方程的解:

边界条件如下

Jmin的一阶条件如下

(i) 状态方程

(ii) 协态方程

(iii) 静止方程

(iv) 边界条件

λ ( t 1 ) = F ( t 1 ) x ( t 1 ) {\displaystyle \lambda (t_{1})=F(t_{1})x(t_{1})}

考虑以下的连续时间线性系统

其成本泛函为

可以让成本最小化的回授控制律为

其中 K {\displaystyle K} 定义为

P {\displaystyle P} 是代数Riccati方程的解

也可以写成下式

其中

考虑离散时间的线性系统,定义如下

其性能指标为

可以让性能指标最小化的最佳控制序列为

其中

P k {\displaystyle P_{k}} 是由动态Riccati方程倒退时间佚代计算而得

从终端条件 P N = Q {\displaystyle P_{N}=Q} 开始计算。注意 u N {\displaystyle u_{N}} 没有定义,因为 x {\displaystyle x} 是由 A x N 1 + B u N 1 {\displaystyle Ax_{N-1}+Bu_{N-1}} 推导到其最终状态 x N {\displaystyle x_{N}}

考虑离散时间的线性系统,定义如下

其性能指标为

可以让性能指标最小化的最佳控制序列为

其中

P {\displaystyle P} 是离散代数Riccati方程(DARE)的唯一正定解。

可以写成

其中

而求解代数Riccati方程的一个方式是迭代计算有限时间的动态Riccati方程,直到所得的解收敛为止。

相关

  • 体积模量体积模量 ( K {\displaystyle K} )也称为不可压缩量,是材料对于表面四周压强产生形变程度的度量。它被定义为产生单位相对体积收缩
  • 汉谟拉比法典《汉谟拉比法典》是古巴比伦第六代国王汉谟拉比颁布的一部法律,被认为是世界上最早的一部比较具有系统的法典,约公元前1754年(中年表(英语:middle chronology))颁布。1901年在埃兰
  • 部族罗马人民大会是古罗马时期罗马共和国的立法机构。会议推行直接民主制,权力建立在普通公民的基础之上,而经选举产生的代表掌握权力,罗马人民大会与罗马元老院的组成是当今议会两
  • 古斯塔沃·古铁雷斯古斯塔沃·古铁雷斯·梅里诺(西班牙语:Gustavo Gutiérrez Merino,1928年6月8日-),秘鲁神学家,多明我会教士,为《解放神学》一书的作者与解放神学的代表人物。他对拉丁美洲的社会、
  • 布鲁托参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):布鲁图(英语:Pluto)是迪士尼经典动画角色之一,是一只土黄色
  • 石勒苏益格Rathausmarkt 1 24837 Schleswig石勒苏益格(德语:Schleswig;低地德语:Sleswig;丹麦语:Slesvig),德国石勒苏益格-荷尔斯泰因州的一个城市,是石勒苏益格-弗伦斯堡县县府所在地。石勒苏
  • 吴建屏吴建屏(1934年4月4日-2012年12月23日),原籍江苏太仓,生于上海,中国神经生理学家,中国科学院上海脑研究所研究员、所长。首次证明来自丘脑腹外侧核神经元的纤维末梢与大脑皮层快锥体
  • 玛丽亚·特里萨礁玛丽亚·特里萨礁(英语:Maria-Theresa Reef)是一座位于南太平洋的小岛。处于新西兰以东,土阿莫土群岛以南的大洋中。为一座火山岛,周围有长8千米,宽3.2千米的珊瑚礁。这座岛自
  • 兖石铁路.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 长野县道162号上田停车场线长野县道162号上田停车场线是日本长野县上田市的一般县道。实际单独区间长度只有7米,是日本单独区间最短的县道。但总长度则包括与长野县道77号长野上田线重复的区间(共长126.