方波是一种非正弦曲线的波形,通常会于电子和讯号处理时出现。理想方波只有“高”和“低”这两个值。
在现实世界,方波只有有限的带宽。由于一般电子零件只有高(1)和低(0)两个值,方波就自然产生,并于数位开关电路中广泛应用。因为方波可以快速从一个值转至另一个(即0→1或1→0),所以方波就用作时钟讯号来准确地触发同步电路。但是如果用频率定义域来表示方波,就会出现一连串的谐波。这可能会产生电磁波和电流脉波,影响周围的电路,产生噪声和错误,对一些精密仪器如类比数位资料转换器(analog-to-digital converter)影响十分明显,所以设计会使用正弦波作时钟讯号来代替方波。
在音乐上,方波被视为空洞的声音,因此会以减法合成过滤方波作管乐的基础。另外,电吉他的失真效果(distortion)把波形的外层削去,令波形趋向成为方波。失真越大会令波形越像方波。
一个“简单二能级莱德马契函数”(simple two-level Rademacher function)就是一个方波。
方波和锯齿波不同。锯齿波包含所有整数谐波成分(integer harmonics),方波只有奇数谐波成分。
我们可以傅里叶级数表达一个理想方波,这个傅里叶级数有无限个项,如下式:
是2.也可以用分段的方式表示:
当下列式子成立时,上述式子成立