爱因斯坦-嘉当理论

✍ dations ◷ 2025-07-07 07:49:26 #广义相对论,重力理论

爱因斯坦-嘉当理论(英语:Einstein-Cartan theory)是理论物理学中将广义相对论延伸以正确处理自旋角动量。此理论以物理学家阿尔伯特·爱因斯坦以及埃利·嘉当(Élie Cartan)为名。

作为经典物理中的主要理论,广义相对论却有一个缺点:其无法描述“自旋轨道耦合”(spin-orbit coupling),亦即内禀角动量(intrinsic angular momentum)(自旋)与轨道角动量(orbital angular momentum)间的交换。存在有定量的理论证明,其显示:当物体具有自旋性质时,广义相对论必须要扩充成爱因斯坦-嘉当理论。

实验上的效应由于太小,目前尚无法观测得到。

自从爱因斯坦将牛顿引力理论推广为广义相对论(爱因斯坦引力理论)以来,爱因斯坦引力理论经受了严格的实验检验,取得了巨大的成功。随着实验观察数据的积累,爱因斯坦引力理论遇到了许多困难。Ia型超新星观察数据表明宇宙是加速膨胀的,为了在爱因斯坦引力理论中说明宇宙的加速膨胀现象,必须引入具有负压的暗能量,而暗能量的观察密度却与量子场论的估计值相差 倍。用光度资料测得的星系质量无法说明星系旋转曲线,为了在爱因斯坦引力理论(牛顿引力理论)中说明此现象,必须引入占星系质量为96%的暗物质,暗物质在星系中的分布情况却难以用现有的物理理论说明。美国的先锋号宇宙飞船在远离太阳时受到了无法用爱因斯坦引力理论(牛顿引力理论)及其它物理效应说明的指向太阳的微小引力,后来物理学家仔细研究了其它宇宙飞船也发现了不能用爱因斯坦引力理论(牛顿引力理论)及其它物理效应说明的微小作用力,这种宇宙飞船轨道异常现象强烈的表明:爱因斯坦引力理论具有缺陷。

利用标准的正则量子化方法和路径积分方法将爱因斯坦引力理论进行量子化得到了不能重整化的结果,这宣告了爱因斯坦引力理论的标准量子化的失败。虽然圈量子化方法取得了一定的成果,但圈量子化是否具有爱因斯坦引力理论极限却没有证明。粒子物理学的理论也取得了一定成果,但仍未得到一个可重整化的量子引力理论。爱因斯坦引力理论的量子化困难提示我们:爱因斯坦引力理论可能存在缺陷。

为了清晰的描述爱因斯坦引力理论的物理图像,我们需要用正交标架场来改写爱因斯坦引力理论。

当将爱因斯坦引力理论与狄拉克电子理论作比较研究时,我们发现:爱因斯坦引力理论与狄拉克电子理论不相容。由于狄拉克电子理论的实验检验精度远大于爱因斯坦引力理论的实验检验精度,因此我们有理由认为:爱因斯坦引力理论具有缺陷。

通过将爱因斯坦引力理论推广为有挠时空中的爱因斯坦-嘉当引力-自旋场理论,我们可以消除爱因斯坦引力理论与狄拉克电子理论之间的矛盾。因此可以认为爱因斯坦-嘉当引力-自旋场理论是比爱因斯坦引力理论更加接近真理的引力理论。利用爱因斯坦-嘉当引力-自旋场理论可以在不引入暗能量的情形下解释飞船轨道异常和宇宙加速膨胀,也可以说明星系暗物质的分布情况。爱因斯坦-嘉当引力-自旋场理论预言:磁化物质之间除了有磁场作用力外还应存在附加的自旋-自旋作用力。

广义相对论无法描述自旋轨道耦合的理由根源于黎曼几何,而广义相对论是建构于其上。在黎曼几何中,里奇曲率张量(Ricci curvature tensor) R a b {\displaystyle R_{ab}} 与对称的(亦即, R a b = R b a {\displaystyle R_{ab}=R_{ba}} ,是因为广义相对论中常用来表示能量-动量张量的在爱因斯坦-嘉当理论留给仿射扭率(affine torsion)。)爱因斯坦曲率张量的对称性强迫动量张量必须是对称的。然而,当自旋与轨道角动量进行交换时,根据角动量守恒的广义式,则知动量张量为不对称的。

因此广义相对论无法适当地为自旋轨道耦合建构模型。

于1922年,埃利·嘉当提出猜想认为广义相对论应该被延伸成包括仿射扭率(affine torsion),其允许里奇张量可以是不对称的。虽然自旋-轨道耦合是重力物理学中相对次要的现象,爱因斯坦–嘉当理论则相当重要,因为

将黎曼几何扩充以包含了仿射扭率则称为黎曼-嘉当几何(Riemann–Cartan geometry)。

时空物理学的数学基础是仿射微分几何(affine differential geometry),其中我们赋予n维微分流形M 一项沿着M上路径对矢量作平行移动的定律。(一微分流形的每个点,我们都有切矢量所组成的一个线性空间,不过我们无法将矢量移动到其他点,或是去比较M上位于不同两点上的矢量。)平行移动保存了矢量间的线性关系;也就是说,若两矢量 u {\displaystyle {\vec {u}}} v {\displaystyle {\vec {v}}} 在M上同一点,沿着一曲线被平行移动成为矢量 u {\displaystyle {\vec {u}}^{\prime }} v {\displaystyle {\vec {v}}^{\prime }} ,则两者的线性组合

也平行移动为

仿射微分几何中的平行性(Parallelism)是路径相依(path-dependent)的;也就是说,如果沿着同起点与同终点之两相异路径平行移动一矢量,在终点所得的结果矢量一般来说是相异的。这样的差异本质上即为曲率的影响,而曲率在微分几何中是个中心概念。

用标架场 λ μ ( α ) {\displaystyle \lambda _{\mu }^{(\alpha )}} 代替度规场 g μ ν {\displaystyle {{g}_{\mu \nu }}} ,我们可以得到用标架场 λ μ ( α ) {\displaystyle \lambda _{\mu }^{(\alpha )}} (仅考虑内禀坐标系变换是整体Lorentz变换)表示的两种等价形式的推广的爱因斯坦引力场运动方程为:

其中:

β 1 , β 2 , β 3 << 1 {\displaystyle {{\beta }_{1}},{{\beta }_{2}},{{\beta }_{3}}<<1} 时,由引力场运动方程的第二形式得到爱因斯坦引力场运动方程: R μ ν 1 2 g μ ν R = 8 π G c 4 P m ν μ {\displaystyle {{R}^{\mu \nu }}-{\frac {1}{2}}{{g}^{\mu \nu }}R={\frac {8\pi G}{{c}^{4}}}P_{m}^{\nu \mu }}

考虑电子与引力的作用时,我们需要引入标架仿射联络 Γ ^ ( β ) μ ( α ) {\displaystyle {\hat {\Gamma }}_{(\beta )\mu }^{(\alpha )}} 。在黎曼时空中,存在关系式: D ν λ μ ( α ) = ν λ μ ( α ) Γ μ ν ρ λ ρ ( α ) + Γ ^ ( β ) ν ( α ) λ μ ( β ) = 0 {\displaystyle {{D}_{\nu }}\lambda _{\mu }^{(\alpha )}={{\partial }_{\nu }}\lambda _{\mu }^{(\alpha )}-\Gamma _{\mu \nu }^{\rho }\lambda _{\rho }^{(\alpha )}+{\hat {\Gamma }}_{(\beta )\nu }^{(\alpha )}\lambda _{\mu }^{(\beta )}=0} ,标架场与标架仿射联络不独立。因此,黎曼时空中的电子场、电磁场及引力场的运动才方程为:

(1)电子场运动方程:

(2)电磁场运动方程:

(3)引力场运动方程:

根据电子场运动方程得到能量-动量流运动方程为:

根据引力场运动方程得到能量-动量流运动方程为:

上述结果表明,从电子场运动方程得到的能量-动量流运动方程与从引力场运动方程得到的能量-动量流运动方程是不相容的。

在有挠时空中,标架场 λ μ ( α ) {\displaystyle \lambda _{\mu }^{(\alpha )}} 与标架仿射联络 Γ ^ ( β ) μ ( α ) {\displaystyle {\hat {\Gamma }}_{(\beta )\mu }^{(\alpha )}} 是独立的,标架场 λ μ ( α ) {\displaystyle \lambda _{\mu }^{(\alpha )}} 描述时空的弯曲,标架仿射联络 Γ ^ ( β ) μ ( α ) {\displaystyle {\hat {\Gamma }}_{(\beta )\mu }^{(\alpha )}} 描述时空的扭曲,并且有:

有挠时空中的引力场推广为引力-自旋场,因此简化形式的爱因斯坦-嘉当引力-自旋场的运动方程:

(1)电子场运动方程:

(2)电磁场运动方程:

(3)自旋场运动方程:

(4)引力场运动方程:

a. 第一形式:

b. 第二形式:

可以证明上述运动方程是相容的,因此有挠时空的爱因斯坦-嘉当引力-自旋场理论消除了爱因斯坦引力理论与狄拉克电子理论之间的矛盾。

相关

  • 骆驼骆驼属(学名:Camelus)通称骆驼,是一种偶蹄目骆驼科的动物,主要有单峰骆驼和双峰骆驼两种,多见于沙漠地带。因其在沙漠以及酷暑、严寒等恶劣自然环境下仍能良好生存的生理特点,沙漠
  • 玉米黄素玉米黄素或玉米黄质(Zeaxanthin)是叶黄素的异构体。他是视网膜含有二种类胡萝卜素的其中一种,主要存在于黄斑部分,其他部分则是以叶黄素为主。辣椒粉 (西餐)、玉米和番红花的独
  • 喀尔文教派加尔文主义(法语、荷兰语:Calvinisme;英语:Calvinism),亦称为归正主义,是16世纪法国与瑞士基督新教宗教改革家约翰·加尔文毕生之主张,以及支持加尔文的其他神学家意见的统称,在不同
  • 蜜蜂总科请帮助翻译和补充蜂通常指所有(Apoidea)的昆虫,主要分为两类:狩蜂(Spheciformes,如泥蜂)及蜂族(Anthophila),和蚂蚁同属膜翅目,普通蜜蜂只是其中一科,所有的蜂都以花蜜和花粉为食物,并在
  • 札加瓦人札加瓦(英语:Zaghawa)是非洲的一个民族,主要生活在查德东部与苏丹西部。他们属于半游牧民族,以驯养牛、骆驼与绵羊为生;此外也种植一些粮食作物。札加瓦人在13世纪之后改信伊斯兰
  • 楼学贤楼学贤(1962年3月22日-),台湾男演员。
  • 默里·罗斯巴德默里·牛顿·罗斯巴德(Murray Newton Rothbard,1926年3月2日-1995年1月7日),是美国犹太裔经济学家、历史学家、自然法理论家、政治理论家,是奥地利经济学派的知名学者,他的著作大量
  • 丹尼·海涅曼数学物理奖丹尼·海涅曼数学物理奖(英语:Dannie Heineman Prize for Mathematical Physics)是由美国物理学会和美国物理协会联合颁发的数学物理奖项,自1959年起每年颁发一次。该奖项由海涅
  • 珲春站珲春站(朝鲜语:훈춘역/琿春驛  */?;俄语:Железнодорожный вокзал г. Хуньчунь,罗马化:Zheleznodorozhnyy vokzal g. Khun'chun')是位于吉林省延边
  • ENTH结构域ENTH结构域(英语:ENTH domain,全称内吞适配蛋白N末端同源结构域,epsin N-terminal homology domain)是一种涉及内吞作用和细胞骨架机制的蛋白质结构域。ENTH结构域长约150个氨基