在几何学中,六角四片四角孔扭歪无限面体 (英语:muoctahedron、日语:六角四片四角孔ねじれ正多面体)是一种正扭歪无限面体,是一个由六边形组成且发散的多面体,其多面体所形成的结构无法包覆一个三维空间区域,因此属于扭歪多面体,其可以视为从截角八面体堆砌(截角八面体的空间填充的形状)中移除所有正方形之后所形成的几何结构。
六角四片四角孔扭歪无限面体由无限多个正六边形组成,具有无线条边和无限多个顶点,每个顶点都是4个正六边形的公共顶点,并具有正方形的孔洞,在施莱夫利符号中可以用{6,4|4}来表示,在顶点图中,亦能使用6.6.6.6来表示,其对偶多面体为四角六片四角孔扭歪无限面体。
六角四片四角孔扭歪无限面体由无限多个正六边形组成,每个正六边形与正六边形的夹角以扭歪的形式交错以截角八面体的六边形-六边形二面角与其反角组成,其角度等于截角八面体的六边形-六边形二面角:
由于其角为正角与反角交错,因而使其所形成的几何结构发散,并形成了具有特定孔洞的几何结构,此种几何结构最早由考克斯特描述。
六角四片四角孔扭歪无限面体每个顶角都是由四个六边形构成的四面角,由于其二面角的交错结构,因此其顶点图是一个扭歪四边形,换句话说即其顶角沿线切开后的形状不是一个凸多边形
六角四片四角孔扭歪无限面体通常用于装置艺术,例如茶几、猫的藏身处、透过其孔洞制造气氛照明装置或做成可堆叠雕塑。
对偶复合体,即一个多面体与其对偶多面体组合成的复合图形。六角四片四角孔扭歪无限面体为复合四角六片四角孔扭歪无限面体六角四片四角孔扭歪无限面体,在施莱夫利符号中用{4,6|4}{6,4|4}表示。
六角四片四角孔扭歪无限面体可以看做是由截角八面体的空间填充的形状——截角八面体堆砌中移除所有正方形面、只保留正六边形面的后所形成的扭歪无限面体,因此,六角四片四角孔扭歪无限面体与截角八面体堆砌有着相同的顶点布局。
六角四片四角孔扭歪无限面体是三种正扭歪无限面体之一,另外两种为:
六角四片四角孔扭歪无限面体在拓朴中相当于四阶六边形镶嵌(施莱夫利符号:{6,4})的商空间,即六角四片四角孔扭歪无限面体可透过拓朴变形成四阶六边形镶嵌。
有些扭歪无限面体也是由六边形组成的,例如六角六片三角孔扭歪无限面体。