首页 >
标准差
✍ dations ◷ 2025-11-29 01:40:16 #标准差
标准差(又称标准偏差、均方差,英语:Standard Deviation,缩写SD),数学符号σ(sigma),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差开算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的概念由卡尔·皮尔逊引入到统计中。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。表述“相差k个标准差”,即在 X̄ ± kS 的样本(Sample)范围内考量。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。μ
{displaystyle mu }
为平均值(
x
¯
{displaystyle {overline {x}}}
)。简易口诀:离均差平方的平均取正平方根;方均根。上述公式可以如下代换而简化:所以:根号里面,亦即方差(
σ
2
{displaystyle sigma ^{2}}
)的简易口诀为:“平方和的平均”减去“平均的平方”。一随机变量
X
{displaystyle X}
的标准差定义为:须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。
如果随机变量
X
{displaystyle X}
为
x
1
,
⋯
,
x
n
{displaystyle x_{1},cdots ,x_{n}}
具有相同概率,则可用上述公式计算标准差。若
X
{displaystyle X}
是由实数
x
1
,
x
2
,
.
.
.
,
x
n
{displaystyle x_{1},x_{2},...,x_{n}}
构成的离散随机变量(英语:discrete random variable),且每个值的概率相等,则
X
{displaystyle X}
的标准差定义为:换成用
∑
{displaystyle sum }
来写,就成为:目前为止,与总体标准差的基本公式一致。然而若每个
x
i
{displaystyle x_{i}}
可以有不同概率
p
i
{displaystyle p_{i}}
,则
X
{displaystyle X}
的标准差定义为:这里,
μ
{displaystyle mu }
为
X
{displaystyle X}
的数学期望。若
X
{displaystyle X}
为概率密度
p
(
X
)
{displaystyle p(X)}
的连续随机变量(英语:continuous random variable),则
X
{displaystyle X}
的标准差定义为:其中
μ
{displaystyle mu }
为
X
{displaystyle X}
的数学期望:对于常数
c
{displaystyle c}
和随机变量
X
{displaystyle X}
和
Y
{displaystyle Y}
:在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。从一大组数值
X
1
,
⋯
,
X
N
{displaystyle X_{1},cdots ,X_{N}}
当中取出一样本数值组合
x
1
,
⋯
,
x
n
:
n
<
N
{displaystyle x_{1},cdots ,x_{n}:n<N}
,常定义其样本标准差:样本方差
s
2
{displaystyle s^{2}}
是对总体方差
σ
2
{displaystyle sigma ^{2}}
的无偏估计。之所以
s
{displaystyle s}
中的分母要用
n
−
1
{displaystyle n-1}
而不是像总体样本差那样用
n
{displaystyle n}
,是因为
(
x
i
−
x
¯
)
{displaystyle left(x_{i}-{bar {x}}right)}
的自由度为
n
−
1
{displaystyle n-1}
,这是由于存在约束条件
∑
i
=
1
n
(
x
i
−
x
¯
)
=
0
{displaystyle sum _{i=1}^{n}left(x_{i}-{bar {x}}right)=0}
。这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{ 5, 6, 8, 9 }:在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设
X
1
,
⋯
,
X
N
{displaystyle X_{1},cdots ,X_{N}}
为实数,定义函数:使用微积分或者通过配方法,不难算出
σ
(
μ
)
{displaystyle sigma (mu )}
在下面情况下具有唯一最小值:从几何学的角度出发,标准差可以理解为一个从
n
{displaystyle n}
维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值,
X
1
,
X
2
,
X
3
{displaystyle X_{1},X_{2},X_{3}}
。它们可以在3维空间中确定一个点
P
=
(
X
1
,
X
2
,
X
3
)
{displaystyle P=(X_{1},X_{2},X_{3})}
。想像一条通过原点的直线
L
=
(
r
,
r
,
r
)
:
r
∈
R
{displaystyle L={(r,r,r):rin mathbb {R} }}
。如果这组数据中的3个值都相等,则点
P
{displaystyle P}
就是直线
L
{displaystyle L}
上的一个点,
P
{displaystyle P}
到
L
{displaystyle L}
的距离为0,所以标准差也为0。若这3个值不都相等,过点
P
{displaystyle P}
作垂线
P
R
{displaystyle PR}
垂直于
L
{displaystyle L}
,
P
R
{displaystyle PR}
交
L
{displaystyle L}
于点
R
{displaystyle R}
,则
R
{displaystyle R}
的坐标为这3个值的平均数:运用一些代数知识,不难发现点
P
{displaystyle P}
与点
R
{displaystyle R}
之间的距离(也就是点
P
{displaystyle P}
到直线
L
{displaystyle L}
的距离)是
σ
3
{displaystyle sigma {sqrt {3}}}
。在
n
{displaystyle n}
维空间中,这个规律同样适用,把
3
{displaystyle 3}
换成
n
{displaystyle n}
就可以了。
相关
- 矿物杂酚油矿物杂酚油(英文:Coal tar creosote 或 Creosote oil),或工业用杂酚油,是一种从煤焦油或其他矿物油中蒸馏而成的液体。需要注意的是,尽管本品有时被称为杂酚油或木馏油,它和前两者
- 死刑美国目前有31个州和联邦政府及军队有死刑法律,其余的州、海外领地和首都华盛顿特区没有死刑。在这些没有死刑的地区,绝大多数的最高刑罚是“终身监禁、不得假释”。另外,美国对
- 雌酮雌酮(英语:Estrone或oestrone,E1,或译为雌酚酮、雌激素酮)是一种较弱的雌性甾体性激素,是三种主要的内源性雌激素之一,另外两种为雌二醇和雌三醇。雌酮等雌激素的生物合成从胆固醇
- 宗教旅游朝圣是宗教或灵性生活寻觅灵性意义的过程,通常是到一处圣地或者是对某人信仰有重要意义的地方。各大宗教都有朝圣的活动。从世俗的角度而言,朝圣是一种族群的认同,而非基于信仰
- 水杨酰胺水杨酰胺是一种属于水杨酸盐类的物质,通常作为止痛药及退烧药的成分之一。然而,水杨酰胺与亚士匹灵一样,均可令儿童患上雷尔氏综合症,因此不适合儿童服用。水杨酰胺有一种衍生物
- 足足部,为汉字索引中的部首之一,康熙字典214个部首中的第一百五十七个(七划的则为第十一个)。就繁体和简体中文中,足部归于七划部首。足部通常从左方、下方为部字。且无其他部首可
- 欧洲四大经济体欧洲四大经济体是指位于欧洲的老牌四大工业经济强国,他们目前仍旧是主导欧洲乃至世界的经济走向的国家之一,分别是德国、法国、英国和意大利。欧洲四大经济体形成于第二次世界
- 特莱维喷泉特雷维喷泉(意大利语:Fontana di Trevi)是一座位于意大利罗马的喷泉,也是罗马最大的巴洛克风格喷泉,高25.6米,宽19.8米。特雷维喷泉也是罗马市著名的景点,游客通常会在此地许愿。特
- iFokIFokI是一种存在于细菌Flavobacterium okeanokoites的type IIS限制酶,含有位于N端的DNA结合区块(N-terminal DNA-binding domain),以及一个位于C端的非专一性DNA切割区块。当此酵
- SeOsub2/sub二氧化硒是一种无机化合物,化学式为SeO2。它是白色晶体,加压液化后可以得到黄色液体,常压下加热至317℃升华,得到绿色蒸气。它和空气中的灰尘接触后,遇光即被还原为硒单质而变红
