标准差

✍ dations ◷ 2025-04-04 11:27:17 #标准差
标准差(又称标准偏差、均方差,英语:Standard Deviation,缩写SD),数学符号σ(sigma),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差开算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的概念由卡尔·皮尔逊引入到统计中。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。表述“相差k个标准差”,即在 X̄ ± kS 的样本(Sample)范围内考量。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。μ {displaystyle mu } 为平均值( x ¯ {displaystyle {overline {x}}} )。简易口诀:离均差平方的平均取正平方根;方均根。上述公式可以如下代换而简化:所以:根号里面,亦即方差( σ 2 {displaystyle sigma ^{2}} )的简易口诀为:“平方和的平均”减去“平均的平方”。一随机变量 X {displaystyle X} 的标准差定义为:须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。 如果随机变量 X {displaystyle X} 为 x 1 , ⋯ , x n {displaystyle x_{1},cdots ,x_{n}} 具有相同概率,则可用上述公式计算标准差。若 X {displaystyle X} 是由实数 x 1 , x 2 , . . . , x n {displaystyle x_{1},x_{2},...,x_{n}} 构成的离散随机变量(英语:discrete random variable),且每个值的概率相等,则 X {displaystyle X} 的标准差定义为:换成用 ∑ {displaystyle sum } 来写,就成为:目前为止,与总体标准差的基本公式一致。然而若每个 x i {displaystyle x_{i}} 可以有不同概率 p i {displaystyle p_{i}} ,则 X {displaystyle X} 的标准差定义为:这里, μ {displaystyle mu } 为 X {displaystyle X} 的数学期望。若 X {displaystyle X} 为概率密度 p ( X ) {displaystyle p(X)} 的连续随机变量(英语:continuous random variable),则 X {displaystyle X} 的标准差定义为:其中 μ {displaystyle mu } 为 X {displaystyle X} 的数学期望:对于常数 c {displaystyle c} 和随机变量 X {displaystyle X} 和 Y {displaystyle Y} :在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。从一大组数值 X 1 , ⋯ , X N {displaystyle X_{1},cdots ,X_{N}} 当中取出一样本数值组合 x 1 , ⋯ , x n : n < N {displaystyle x_{1},cdots ,x_{n}:n<N} ,常定义其样本标准差:样本方差 s 2 {displaystyle s^{2}} 是对总体方差 σ 2 {displaystyle sigma ^{2}} 的无偏估计。之所以 s {displaystyle s} 中的分母要用 n − 1 {displaystyle n-1} 而不是像总体样本差那样用 n {displaystyle n} ,是因为 ( x i − x ¯ ) {displaystyle left(x_{i}-{bar {x}}right)} 的自由度为 n − 1 {displaystyle n-1} ,这是由于存在约束条件 ∑ i = 1 n ( x i − x ¯ ) = 0 {displaystyle sum _{i=1}^{n}left(x_{i}-{bar {x}}right)=0} 。这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{ 5, 6, 8, 9 }:在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设 X 1 , ⋯ , X N {displaystyle X_{1},cdots ,X_{N}} 为实数,定义函数:使用微积分或者通过配方法,不难算出 σ ( μ ) {displaystyle sigma (mu )} 在下面情况下具有唯一最小值:从几何学的角度出发,标准差可以理解为一个从 n {displaystyle n} 维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值, X 1 , X 2 , X 3 {displaystyle X_{1},X_{2},X_{3}} 。它们可以在3维空间中确定一个点 P = ( X 1 , X 2 , X 3 ) {displaystyle P=(X_{1},X_{2},X_{3})} 。想像一条通过原点的直线 L = ( r , r , r ) : r ∈ R {displaystyle L={(r,r,r):rin mathbb {R} }} 。如果这组数据中的3个值都相等,则点 P {displaystyle P} 就是直线 L {displaystyle L} 上的一个点, P {displaystyle P} 到 L {displaystyle L} 的距离为0,所以标准差也为0。若这3个值不都相等,过点 P {displaystyle P} 作垂线 P R {displaystyle PR} 垂直于 L {displaystyle L} , P R {displaystyle PR} 交 L {displaystyle L} 于点 R {displaystyle R} ,则 R {displaystyle R} 的坐标为这3个值的平均数:运用一些代数知识,不难发现点 P {displaystyle P} 与点 R {displaystyle R} 之间的距离(也就是点 P {displaystyle P} 到直线 L {displaystyle L} 的距离)是 σ 3 {displaystyle sigma {sqrt {3}}} 。在 n {displaystyle n} 维空间中,这个规律同样适用,把 3 {displaystyle 3} 换成 n {displaystyle n} 就可以了。

相关

  • 医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医学是以诊断、治疗和预防生理和心理
  • 生殖腺生殖腺是人和动物产生生殖细胞和分泌性激素的器官。低等动物又称“生殖巢”,即精巢和卵巢的总称;高等动物雄性的生殖腺是睾丸,雌性的生殖腺是卵巢。人类在青春期后睾丸产生精子
  • 古元古代古元古代(英语:Paleoproterozoic,符号PP)是地质时代中的一个代,开始于同位素年龄25亿年前(Ma),结束于16亿年前(Ma)。而古元古代期间蓝藻、细菌非常繁盛。古元古代属于前寒武纪元古宙,上
  • 肌痛肌肉痛(英语:Myalgia),如字面意思所言——肌肉疼痛,是多种疾病的症状,其最常见的成因是肌肉(群)的过度拉伸、过度使用。没有肌肉创伤史的肌肉痛则通常是由病毒感染所引起,而长期肌肉
  • 锌镉合金锌镉合金,是由锌与镉融合在一起的合金材料。锌镉合金为银白色,与镁的颜色一样,故俗称为镁锌合金,但其实并没有镁的成分在里面。
  • 耒部,为汉字索引中的部首之一,康熙字典214个部首中的第一百二十七个(六划的则为第十个)。就繁体和简体中文中,耒部归于六划部首。耒部只以左方为部字。且无其他部首可用者将部首
  • 意大利体育意大利体育有着悠久的传统,并且在许多体育项目上都有优秀的成绩。足球是意大利最受欢迎的体育项目,意大利最近一次获得足球世界杯冠军是在2006年,并且已经四次获得世界杯足球赛
  • 量热法量热法或量热学(英语:Calorimetry)是测定因诸如化学反应、物理变化或相变之类的原因,一个物体在传热时状态变量发生的变化的一种方法或者一门科学。量热的过程会使用到热量计。
  • 印度储备银行印度储备银行(印地语:भारतीय रिज़र्व बैंक,英语:Reserve Bank of India)是印度的中央银行,按照中央立法会议1934年通过的《印度储备银行法案》,而成立于1935年4月
  • 鄂霍次克海坐标:55°N 150°E / 55°N 150°E / 55; 150鄂霍次克海(俄语:Охо́тское мо́ре,罗马化:Okhotskoye More,IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Dou