首页 >
标准差
✍ dations ◷ 2025-04-25 04:19:00 #标准差
标准差(又称标准偏差、均方差,英语:Standard Deviation,缩写SD),数学符号σ(sigma),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差开算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的概念由卡尔·皮尔逊引入到统计中。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。表述“相差k个标准差”,即在 X̄ ± kS 的样本(Sample)范围内考量。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。μ
{displaystyle mu }
为平均值(
x
¯
{displaystyle {overline {x}}}
)。简易口诀:离均差平方的平均取正平方根;方均根。上述公式可以如下代换而简化:所以:根号里面,亦即方差(
σ
2
{displaystyle sigma ^{2}}
)的简易口诀为:“平方和的平均”减去“平均的平方”。一随机变量
X
{displaystyle X}
的标准差定义为:须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。
如果随机变量
X
{displaystyle X}
为
x
1
,
⋯
,
x
n
{displaystyle x_{1},cdots ,x_{n}}
具有相同概率,则可用上述公式计算标准差。若
X
{displaystyle X}
是由实数
x
1
,
x
2
,
.
.
.
,
x
n
{displaystyle x_{1},x_{2},...,x_{n}}
构成的离散随机变量(英语:discrete random variable),且每个值的概率相等,则
X
{displaystyle X}
的标准差定义为:换成用
∑
{displaystyle sum }
来写,就成为:目前为止,与总体标准差的基本公式一致。然而若每个
x
i
{displaystyle x_{i}}
可以有不同概率
p
i
{displaystyle p_{i}}
,则
X
{displaystyle X}
的标准差定义为:这里,
μ
{displaystyle mu }
为
X
{displaystyle X}
的数学期望。若
X
{displaystyle X}
为概率密度
p
(
X
)
{displaystyle p(X)}
的连续随机变量(英语:continuous random variable),则
X
{displaystyle X}
的标准差定义为:其中
μ
{displaystyle mu }
为
X
{displaystyle X}
的数学期望:对于常数
c
{displaystyle c}
和随机变量
X
{displaystyle X}
和
Y
{displaystyle Y}
:在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。从一大组数值
X
1
,
⋯
,
X
N
{displaystyle X_{1},cdots ,X_{N}}
当中取出一样本数值组合
x
1
,
⋯
,
x
n
:
n
<
N
{displaystyle x_{1},cdots ,x_{n}:n<N}
,常定义其样本标准差:样本方差
s
2
{displaystyle s^{2}}
是对总体方差
σ
2
{displaystyle sigma ^{2}}
的无偏估计。之所以
s
{displaystyle s}
中的分母要用
n
−
1
{displaystyle n-1}
而不是像总体样本差那样用
n
{displaystyle n}
,是因为
(
x
i
−
x
¯
)
{displaystyle left(x_{i}-{bar {x}}right)}
的自由度为
n
−
1
{displaystyle n-1}
,这是由于存在约束条件
∑
i
=
1
n
(
x
i
−
x
¯
)
=
0
{displaystyle sum _{i=1}^{n}left(x_{i}-{bar {x}}right)=0}
。这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{ 5, 6, 8, 9 }:在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设
X
1
,
⋯
,
X
N
{displaystyle X_{1},cdots ,X_{N}}
为实数,定义函数:使用微积分或者通过配方法,不难算出
σ
(
μ
)
{displaystyle sigma (mu )}
在下面情况下具有唯一最小值:从几何学的角度出发,标准差可以理解为一个从
n
{displaystyle n}
维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值,
X
1
,
X
2
,
X
3
{displaystyle X_{1},X_{2},X_{3}}
。它们可以在3维空间中确定一个点
P
=
(
X
1
,
X
2
,
X
3
)
{displaystyle P=(X_{1},X_{2},X_{3})}
。想像一条通过原点的直线
L
=
(
r
,
r
,
r
)
:
r
∈
R
{displaystyle L={(r,r,r):rin mathbb {R} }}
。如果这组数据中的3个值都相等,则点
P
{displaystyle P}
就是直线
L
{displaystyle L}
上的一个点,
P
{displaystyle P}
到
L
{displaystyle L}
的距离为0,所以标准差也为0。若这3个值不都相等,过点
P
{displaystyle P}
作垂线
P
R
{displaystyle PR}
垂直于
L
{displaystyle L}
,
P
R
{displaystyle PR}
交
L
{displaystyle L}
于点
R
{displaystyle R}
,则
R
{displaystyle R}
的坐标为这3个值的平均数:运用一些代数知识,不难发现点
P
{displaystyle P}
与点
R
{displaystyle R}
之间的距离(也就是点
P
{displaystyle P}
到直线
L
{displaystyle L}
的距离)是
σ
3
{displaystyle sigma {sqrt {3}}}
。在
n
{displaystyle n}
维空间中,这个规律同样适用,把
3
{displaystyle 3}
换成
n
{displaystyle n}
就可以了。
相关
- 喉入口喉入口(laryngeal inlet、laryngeal aditus、laryngeal aperture)是连接咽部及喉部的开口处。其边界由以下三方形成:喉部,咽部和舌头的深层解剖、后视图。喉部,咽部和舌头的深层
- 教育技术学教育技术是以计算机为核心的移动信息通信技术在教育、教学中的运用。(双十洪纪承,2015)教育技术是一个新兴学科,是伴随着计算机的出现而出现的,它是传统教育插上计算机科学之后
- 诱发电位测试事件相关电位(英语:event-related potential,ERP)是一项基于脑电图技术的,在神经科学领域中有广泛应用的研究手段。在国际心理生理学研究学会(Society for Psychophysiological Re
- 谷胱甘肽S-转移酶谷胱甘肽S-转移酶(英语:Glutathione S-transferase)家族由许多胞质溶胶、线粒体与微粒体(现被称为MAPEG)蛋白质组成。谷胱甘肽S-转移酶存在于真核细胞与原核细胞中,参与催化多种反
- 海外领土属地(英语:Dependent Territory或Dependent Area或Dependency)是附属于主权国家之下,但拥有部分独立管治权力的地区。虽然没有完整主权,但是其政治地位异于管治国主体的其他领土,
- 单磷酸尿苷单磷酸尿苷(英语:Uridine monophosphate,或译一磷酸尿苷、尿苷单磷酸、尿苷酸,英文缩写UMP)。是一种存在于RNA中的核苷酸。也是一种由磷酸与核苷尿苷所组成的酯类。包含磷酸官能
- 碑碑是指人为竖立的石块,通常刻有文字,具有一定用途,如记载事件、指示里程(里程碑)、划定边界(界碑)及作纪念用途(纪念碑)等。中国古代官员都有立碑的习惯,视为荣耀。唐朝的地方官若要立
- 纳胡姆·索嫩贝尔格纳胡姆·索嫩贝尔格(英语:Nahum Sonenberg,1946年12月29日-),以色列微生物学家、生物化学家,现为加拿大麦吉尔大学教授。索嫩贝尔格确定了eIF4E-蛋白质,它是的mRNA的5'端帽结构的一
- 杰弗里·戈登杰弗里·伊万·戈登(英语:Jeffrey Ivan Gordon,1947年-),美国微生物学家,圣路易斯华盛顿大学教授。戈登是人类寄生微生物,尤其是肠道寄生物跨学科研究的先驱。他为定义人类寄生微生
- 非特异性症状人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学症状(英语:symptom)又称病状,医学术语,在疾