标准差

✍ dations ◷ 2025-06-07 17:50:33 #标准差
标准差(又称标准偏差、均方差,英语:Standard Deviation,缩写SD),数学符号σ(sigma),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差开算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的概念由卡尔·皮尔逊引入到统计中。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。表述“相差k个标准差”,即在 X̄ ± kS 的样本(Sample)范围内考量。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。μ {displaystyle mu } 为平均值( x ¯ {displaystyle {overline {x}}} )。简易口诀:离均差平方的平均取正平方根;方均根。上述公式可以如下代换而简化:所以:根号里面,亦即方差( σ 2 {displaystyle sigma ^{2}} )的简易口诀为:“平方和的平均”减去“平均的平方”。一随机变量 X {displaystyle X} 的标准差定义为:须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。 如果随机变量 X {displaystyle X} 为 x 1 , ⋯ , x n {displaystyle x_{1},cdots ,x_{n}} 具有相同概率,则可用上述公式计算标准差。若 X {displaystyle X} 是由实数 x 1 , x 2 , . . . , x n {displaystyle x_{1},x_{2},...,x_{n}} 构成的离散随机变量(英语:discrete random variable),且每个值的概率相等,则 X {displaystyle X} 的标准差定义为:换成用 ∑ {displaystyle sum } 来写,就成为:目前为止,与总体标准差的基本公式一致。然而若每个 x i {displaystyle x_{i}} 可以有不同概率 p i {displaystyle p_{i}} ,则 X {displaystyle X} 的标准差定义为:这里, μ {displaystyle mu } 为 X {displaystyle X} 的数学期望。若 X {displaystyle X} 为概率密度 p ( X ) {displaystyle p(X)} 的连续随机变量(英语:continuous random variable),则 X {displaystyle X} 的标准差定义为:其中 μ {displaystyle mu } 为 X {displaystyle X} 的数学期望:对于常数 c {displaystyle c} 和随机变量 X {displaystyle X} 和 Y {displaystyle Y} :在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。从一大组数值 X 1 , ⋯ , X N {displaystyle X_{1},cdots ,X_{N}} 当中取出一样本数值组合 x 1 , ⋯ , x n : n < N {displaystyle x_{1},cdots ,x_{n}:n<N} ,常定义其样本标准差:样本方差 s 2 {displaystyle s^{2}} 是对总体方差 σ 2 {displaystyle sigma ^{2}} 的无偏估计。之所以 s {displaystyle s} 中的分母要用 n − 1 {displaystyle n-1} 而不是像总体样本差那样用 n {displaystyle n} ,是因为 ( x i − x ¯ ) {displaystyle left(x_{i}-{bar {x}}right)} 的自由度为 n − 1 {displaystyle n-1} ,这是由于存在约束条件 ∑ i = 1 n ( x i − x ¯ ) = 0 {displaystyle sum _{i=1}^{n}left(x_{i}-{bar {x}}right)=0} 。这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{ 5, 6, 8, 9 }:在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设 X 1 , ⋯ , X N {displaystyle X_{1},cdots ,X_{N}} 为实数,定义函数:使用微积分或者通过配方法,不难算出 σ ( μ ) {displaystyle sigma (mu )} 在下面情况下具有唯一最小值:从几何学的角度出发,标准差可以理解为一个从 n {displaystyle n} 维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值, X 1 , X 2 , X 3 {displaystyle X_{1},X_{2},X_{3}} 。它们可以在3维空间中确定一个点 P = ( X 1 , X 2 , X 3 ) {displaystyle P=(X_{1},X_{2},X_{3})} 。想像一条通过原点的直线 L = ( r , r , r ) : r ∈ R {displaystyle L={(r,r,r):rin mathbb {R} }} 。如果这组数据中的3个值都相等,则点 P {displaystyle P} 就是直线 L {displaystyle L} 上的一个点, P {displaystyle P} 到 L {displaystyle L} 的距离为0,所以标准差也为0。若这3个值不都相等,过点 P {displaystyle P} 作垂线 P R {displaystyle PR} 垂直于 L {displaystyle L} , P R {displaystyle PR} 交 L {displaystyle L} 于点 R {displaystyle R} ,则 R {displaystyle R} 的坐标为这3个值的平均数:运用一些代数知识,不难发现点 P {displaystyle P} 与点 R {displaystyle R} 之间的距离(也就是点 P {displaystyle P} 到直线 L {displaystyle L} 的距离)是 σ 3 {displaystyle sigma {sqrt {3}}} 。在 n {displaystyle n} 维空间中,这个规律同样适用,把 3 {displaystyle 3} 换成 n {displaystyle n} 就可以了。

相关

  • 滋养体活动体(trophozoite)是原虫类寄生虫(Protozoan parasites)生活史上的一个活跃、有运动性和繁殖的阶段。活动体之后会发展成裂殖体(schizont)阶段,即成为一个母细胞。寄生虫在活动体
  • 环甲韧带环甲韧带(cricothyroid ligament;conus elasticus)由两个部分组成:在紧急情况之环甲膜切开术(英语:Cricothyrotomy)则切断韧带。这种韧带的主要目的是保持环状软骨和甲状软骨不要分
  • 希尔伯特大卫·希尔伯特(德语:David Hilbert .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gent
  • 王政时期罗马王政时代或罗马王国(拉丁语:REGNVM ROMANVM)是指前753年到前509年这一时期的古罗马,此时的罗马是一个君主制国家,尚未建立共和国。罗马王国时期,氏族部落组织尚完整存在,统治阶
  • 显影剂显影剂可指下列药剂:
  • 卵子卵子是雌性动物的生殖细胞。卵细胞(由次级卵母细胞产生)成熟后成为卵子。在哺乳动物上,卵子是由卵巢所产生的。所有哺乳类在出生时,卵巢内已经有未成熟的卵子存在,而且在出生后卵
  • Qsub10/subQ10是指物理系统或化学系统增温摄氏10度的改变率。使用Q10已有许多例子,其中之一是食物腐败速度、神经传导速度和肌肉纤维的收缩速度等等。Q10也能被应用在化学反应及其他系
  • 龙胆酸龙胆酸 (标准名2,5-二羟基苯甲酸)是一种多羟基酸,它是水杨酸经肾代谢之后的次要产物(1%)。龙胆酸在工业上通过氢醌的科尔贝-施密特反应制备而得。龙胆酸属氢醌类化合物,容易发生氧
  • VBCI步兵战车VBCI步兵坦克(法语:Véhicule Blindé de Combat d'Infanterie)为新一代法国轮式步兵战车。VBCI的车体由铝合金制造,外部覆盖特种钢和钛合金模块装甲。底盘为8x8全驱动结构,具有
  • 经史子集四部分类法,是分类大部分中国古典典籍的方法,分经、史、子、集四类,这四类基本上囊括了中国古代的所有书籍。由刘向和刘歆编订的《七略》是中国第一部官修目录,奠定了中国目录学