首页 >
偏序关系
✍ dations ◷ 2025-04-03 12:39:47 #偏序关系
偏序集合(英语:Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。
这个理论将排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。给定集合S,“≤”是S上的二元关系,若“≤”满足:则称“≤”是S上的非严格偏序或自反偏序。给定集合S,“<”是S上的二元关系,若“<”满足:则称“<”是S上的严格偏序或反自反偏序。严格偏序与有向无环图(dag)有直接的对应关系。一个集合上的严格偏序的关系图就是一个有向无环图。其传递闭包是它自己。容易证明以下结论:由上述可知,只要定义了“≤”、“<”、“≥”、“>”中的任何一个,其余三个关系的定义可以自然诱导而出,这四种关系实际上可以看成一体。故此在不严格区分的情况下,只需定义其一即可(通常是“≤”),称之为集合S上的偏序关系。(“偏序关系”通常被用来称呼非严格偏序关系。)若集合S上定义了一个偏序,则S称为偏序集(poset);若将其上的偏序关系改为其逆关系,得到的新偏序集S'称为S的序对偶。虽然通常术语“有序集”用来称呼全序集,但当上下文中不涉及其他序关系时,“有序集”也可用于称呼偏序集。下面是一些主要的例子:一般的说偏序集合的两个元素x和y可以处于四个相互排斥的关联中任何一个:要么x < y,要么x = y,要么x > y,要么x和y是“不可比较”的(三个都不是)。全序集合是用规则排除第四种可能的集合:所有元素对都是可比较的,并且声称三分法成立。自然数、整数、有理数和实数都关于它们代数(有符号)大小是全序的,而复数不是。这不是说复数不能全序排序;比如我们可以按词典次序排序它们,通过x+iy < u+iv当且仅当x < u或(x = u且y < v),但是这种排序没有合理的大小意义因为它使得1大于100i。按绝对大小排序它们产生在其中所有对都是可比较的预序,但这不是偏序因为1和i有相同的绝对大小但却不相等,违反了反对称性。全序T是偏序P的线性扩展,只要x ≤ y在P中成立则x ≤ y在T中也成立。在计算机科学中,找到偏序的线性扩展的算法叫做拓扑排序。
相关
- 气管炎气管炎(英语:Tracheitis),是指一类病发于气管的炎症。虽然气管通常被认为是下呼吸道的一部分,在ICD-10中,气管炎被分类于“急性上呼吸道感染”。细菌气管炎是气管的细菌感染,并且能
- 肿瘤学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学肿瘤学(英:Oncology)是一种研究肿瘤(尤其
- 杆菌杆菌,指外观呈杆状的细菌。根据其排列组合,可分为单杆菌,双杆菌和链杆菌。杆菌的样例有大肠杆菌、枯草芽孢杆菌、乳酸杆菌、幽门螺杆菌等。
- 硬膜外脓肿脓疡(拉丁语:abscessus; 德语:Abszess; 法语:Abcès; 英语:Abscess)又称作脓疮、脓肿。指的是在身体组织中蓄积的脓。接近体表的脓疡会有红、肿、热、痛等症状,触诊病灶时感觉其内
- 地区法院议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 视觉化视觉化(英文:Visulation),又称为可视化模拟或者可视化仿真,是指其中对于特定系统的可视化与计算机模拟同时进行的一种混合过程。许多的用于GPGPU程序之中都包括有视觉化过程;通常,
- 神庙希腊神庙(古希腊语:ὁ ναός,ho naós,“居所”;语义有别于拉丁文templum以及英文“temple”(“神庙、寺庙、庙宇”),也名为希腊神殿。在古希腊宗教中的希腊圣所内是为安座众神神
- 8人类的8号染色体是23对染色体的其中之一,正常状况下每个细胞拥有两条。此染色体含有大约155百万个碱基对,占细胞内所有DNA的4.5%到5%。该染色体有两条臂,分别命名为8p和8q。其
- 胆总管胆管为胆汁由肝脏传送至十二指肠的一个管道。肝内的胆小管逐级合并成左、右肝管,出肝门再合成为肝总管;肝总管与胆囊管汇合成胆总管。肝细胞持续不断的制造胆汁浓缩并储存于胆
- 加拿大原住民音节文字加拿大原住民音节文字(Canadian Aboriginal syllabics),是一系列的音节文字,用于书写几种加拿大境内原住民语言,这些语言分别属于阿尔冈昆语族、爱斯基摩-阿留申语系和德内语支。