三次方程

✍ dations ◷ 2025-04-02 17:31:13 #初等代数,方程,多项式

三次方程是未知项总次数最高为3的整式方程,一元三次方程一般形式为

其中 a , b , c , d ( 0 ) {\displaystyle a,b,c,d(\neq 0)} 是属于一个域的数字,通常这个域为R或C。

本条目只解释一元三次方程,而且简称之为三次方程。

中国唐朝数学家王孝通在武德九年(626年)前后所著的《缉古算经》中建立了25个三次多项式方程和提出三次方程实根的数值解法。

波斯数学家欧玛尔·海亚姆(1048年-1123年)通过用圆锥截面与圆相交的方法构建了三次方程的解法。他说明了怎样用这种几何方法利用三角法表得到数字式的答案。

中国南宋的数学家秦九韶在他1247年编写的《数书九章》一书中提出了高次方程的数值解法秦九韶算法,提出“商常为正,实常为负,从常为正,益常为负”的原则。

在十六世纪早期,意大利数学家费罗找到了能解一种三次方程的方法,也就是形如 x 3 + m x = n {\displaystyle x^{3}+mx=n} 的方程。事实上,如果我们允许 m , n {\displaystyle m,n} 是复数,所有的三次方程都能变成这种形式,但在那个时候人们不知道复数。

尼科洛·塔尔塔利亚被认为是最早得出三次方程一般解的人。1553年他在一场数学竞赛中解出所有三次方程的问题。随后卡尔丹诺拜访了塔尔塔利亚请教三次方程解法并得到了启发。卡尔丹诺注意到塔尔塔利亚的方法有时需要他给复数开平方。他甚至在《数学大典》里包括了这些复数的计算,但他并不真正理解它。拉斐尔·邦贝利(Rafael Bombelli)详细地研究了这个问题,并因此被人们认为是复数的发现者。

红色字体部分为判别式 Δ {\displaystyle \Delta }

Δ > 0 {\displaystyle \Delta >0} 时,方程有一个实根和两个共轭复根;

Δ = 0 {\displaystyle \Delta =0} 时,方程有三个实根:当

时,方程有一个三重实根;

时,方程的三个实根中有两个相等;

Δ < 0 {\displaystyle \Delta <0} 时,方程有三个不等的实根。

a x 3 + b x 2 + c x + d = 0 {\displaystyle ax^{3}+bx^{2}+cx+d=0} ,其中 a 0 {\displaystyle a\neq 0}

若令 Δ = ( b 3 27 a 3 d 2 a + b c 6 a 2 ) 2 + ( c 3 a b 2 9 a 2 ) 3 = α 2 + β 3 < 0 {\displaystyle \Delta =\left({\frac {-b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\frac {bc}{6a^{2}}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}=\alpha ^{2}+\beta ^{3}<0} ,则

x 1 = b 3 a + 2 β cos {\displaystyle x_{1}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

x 2 = b 3 a + 2 β cos {\displaystyle x_{2}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

x 3 = b 3 a + 2 β cos {\displaystyle x_{3}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

K {\displaystyle K} 为域,可以进行开平方或立方运算。要解方程只需找到一个根 r {\displaystyle r} ,然后把方程 a x 3 + b x 2 + c x + d {\displaystyle ax^{3}+bx^{2}+cx+d} 除以 x r {\displaystyle x-r} ,就得到一个二次方程,而我们已会解二次方程。

在一个代数封闭域,所有三次方程都有三个根。复数域就是这样一个域,这是代数基本定理的结果。

解方程步骤:

接下来, u {\displaystyle u} v {\displaystyle v} U {\displaystyle U} V {\displaystyle V} 的立方根,适合 u v = p 3 {\displaystyle uv=-{\frac {p}{3}}} z = u + v {\displaystyle z=u+v} ,最后得出 x = z b 3 {\displaystyle x=z-{\frac {b'}{3}}}

在域 C {\displaystyle \mathbb {C} } 里,若 u 0 {\displaystyle u_{0}} v 0 {\displaystyle v_{0}} 是立方根,其它的立方根就是 ω u 0 {\displaystyle \omega u_{0}} ω 2 u 0 {\displaystyle \omega ^{2}u_{0}} ,当然还有 ω v 0 {\displaystyle \omega v_{0}} ω 2 v 0 {\displaystyle \omega ^{2}v_{0}} ,其中 ω = e 2 i π 3 = 1 + 3 i 2 {\displaystyle \omega =e^{\frac {2i\pi }{3}}={\frac {-1+{\sqrt {3}}i}{2}}} ,是1的一个复数立方根。

因为乘积 u v = p 3 {\displaystyle uv=-{\frac {p}{3}}} 固定,所以可能的 ( u , v ) {\displaystyle (u,v)} ( u 0 , v 0 ) {\displaystyle (u_{0},v_{0})} ( ω u 0 , ω 2 v 0 ) {\displaystyle (\omega u_{0},\omega ^{2}v_{0})} ( ω 2 u 0 , ω v 0 ) {\displaystyle (\omega ^{2}u_{0},\omega v_{0})} 。因此三次方程的其它根是 ω u 0 + ω 2 v 0 b 3 {\displaystyle \omega u_{0}+\omega ^{2}v_{0}-{\frac {b'}{3}}} ω 2 u 0 + ω v 0 b 3 {\displaystyle \omega ^{2}u_{0}+\omega v_{0}-{\frac {b'}{3}}}

最先尝试解的三次方程是实系数(而且是整数)。因为实数域并非代数封闭,方程的根的数目不一定是3个。所遗漏的根都在 C {\displaystyle \mathbb {C} } 里,就是 R {\displaystyle \mathbb {R} } 的代数闭包。其中差异出现于 U {\displaystyle U} V {\displaystyle V} 的计算中取平方根时。取立方根时则没有类似问题。

可以证明实数根数目依赖于辅助方程的判别式 Δ = q 2 4 + p 3 27 {\displaystyle \Delta ={\frac {q^{2}}{4}}+{\frac {p^{3}}{27}}}

注意到实系数三次方程至少有一实根存在,这是因为非常数多项式在 + {\displaystyle +\infty } {\displaystyle -\infty } 的极限是无穷大,对奇次多项式这两个极限异号,又因为多项式是连续函数,所以从介值定理可知它在某点的值为0。

2 t 3 + 6 t 2 + 12 t + 10 = 0 {\displaystyle 2t^{3}+6t^{2}+12t+10=0}

我们依照上述步骤进行:

该方程的另外两个根:

这是一个历史上的例子,因为它是邦别利考虑的方程。

方程是 x 3 15 x 4 = 0 {\displaystyle x^{3}-15x-4=0}

从函数 x x 3 15 x 4 {\displaystyle x\mapsto x^{3}-15x-4} 算出判别式的值 Δ = 13068 < 0 {\displaystyle \Delta =-13068<0} ,知道这方程有三实根,所以比上例更容易找到一个根。

前两步都不需要做,做第三步: x = u + v {\displaystyle x=u+v} U = u 3 {\displaystyle U=u^{3}} V = v 3 {\displaystyle V=v^{3}}

U {\displaystyle U} V {\displaystyle V} X 2 4 X + 125 = 0 {\displaystyle X^{2}-4X+125=0} 的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。

我们解出 U = 2 11 i {\displaystyle U=2-11{\mathrm {i} }} V = 2 + 11 i {\displaystyle V=2+11{\mathrm {i} }} 。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部:现设 u = a + b i {\displaystyle u=a+b{\mathrm {i} }}

得到 a = 2 {\displaystyle a=2} b = 1 {\displaystyle b=-1} ,也就是 u = 2 i {\displaystyle u=2-{\mathrm {i} }} ,而 v {\displaystyle v} 是其共轭: v = 2 + i {\displaystyle v=2+{\mathrm {i} }}

归结得 x = u + v = ( 2 i ) + ( 2 + i ) = 4 {\displaystyle x=u+v=(2-{\mathrm {i} })+(2+{\mathrm {i} })=4} ,可以立时验证出来。

其它根是 x = j ( 2 i ) + j 2 ( 2 + i ) = 2 + 3 {\displaystyle x'=j(2-{\mathrm {i} })+j^{2}(2+{\mathrm {i} })=-2+{\sqrt {3}}} x = j 2 ( 2 i ) + j ( 2 + i ) = 2 3 {\displaystyle x''=j^{2}(2-{\mathrm {i} })+j(2+{\mathrm {i} })=-2-{\sqrt {3}}} ,其中 j = 1 + 3 i 2 {\displaystyle j={\frac {-1+{\sqrt {3}}i}{2}}}

Δ {\displaystyle \Delta } 是负, U {\displaystyle U}

相关

  • 到此一游到此一游可以指:
  • 伽利略传《伽利略传》(德语:Leben des Galilei)是由德国剧作家贝托尔特·布莱希特创作的一出戏剧,主要讲述伽利略因其天文发现触怒教廷,在真理与威权之间摇摆的故事。
  • 八所口岸八所口岸是中国海南省对越南边界贸易的主要口岸,位于东方市。因越南热带雨林气候,该口岸的检疫工作对于防止有害生物入境有十分重要的作用。海关的业务管辖区域为东方市、昌江
  • 亚历山大·法尔内塞 (枢机)亚历山大·法尔内塞(意大利语:Alessandro Farnese il Giovane;1520年10月7日-1589年3月2日)是一名意大利枢机、外交官、艺术收藏家及赞助者。他是教宗保禄三世的长孙,帕尔马公爵皮
  • 黑毛桩菇黑毛椿菇,分布于北半球,属椿菇属,色通常为土黄褐色。另外,该种野菇也是木栖腐生的超大型菇类,该菇类不可食用,为常见的毒菇。
  • 伦古伦古(爱沙尼亚语:Rõngu),是爱沙尼亚的城镇,位于该国东南部,由塔尔图县负责管辖,是伦古乡的首府,处于首都塔林东南面170公里,海拔高度84米,2012年该城镇人口738。坐标:58°08′29″N 26
  • 保险密度保险密度是指一国(地区)的人均保费收入,它是衡量一国(地区)保险市场发展程度和潜力的指标之一。2003年世界平均的保险密度为469.6美元,2004年中国保险密度为332人民币。
  • 呼叫中心呼叫中心是基于现代通讯与CTI平台,采用了IVR、ACD等等功能,可以同时处理大量各种不同的电话呼入和呼出业务与服务的系统。呼叫中心从建立到现在的广泛应用,主要经历了六个发展
  • 海因里希·鲁本斯海因里希·鲁本斯(Heinrich Rubens,(1865年3月30日-1922年7月17日))是一名德国物理学家。1865年生于拿骚公国威斯巴登的一个犹太家庭。在美因河畔法兰克福上完高中后,1884年起,他
  • 根本匠根本匠(1951年3月7日-),日本建设官僚、政治家,自由民主党党员。出身于福岛县郡山市。至今连续共当选7届众议院议员。在自民党内属于宏池会(岸田派)。历任内阁府副大臣、内阁总理大