三次方程是未知项总次数最高为3的整式方程,一元三次方程一般形式为
其中
是属于一个域的数字,通常这个域为R或C。
本条目只解释一元三次方程,而且简称之为三次方程。
中国唐朝数学家王孝通在武德九年(626年)前后所著的《缉古算经》中建立了25个三次多项式方程和提出三次方程实根的数值解法。
波斯数学家欧玛尔·海亚姆(1048年-1123年)通过用圆锥截面与圆相交的方法构建了三次方程的解法。他说明了怎样用这种几何方法利用三角法表得到数字式的答案。
中国南宋的数学家秦九韶在他1247年编写的《数书九章》一书中提出了高次方程的数值解法秦九韶算法,提出“商常为正,实常为负,从常为正,益常为负”的原则。
在十六世纪早期,意大利数学家费罗找到了能解一种三次方程的方法,也就是形如
的方程。事实上,如果我们允许
是复数,所有的三次方程都能变成这种形式,但在那个时候人们不知道复数。
尼科洛·塔尔塔利亚被认为是最早得出三次方程一般解的人。1553年他在一场数学竞赛中解出所有三次方程的问题。随后卡尔丹诺拜访了塔尔塔利亚请教三次方程解法并得到了启发。卡尔丹诺注意到塔尔塔利亚的方法有时需要他给复数开平方。他甚至在《数学大典》里包括了这些复数的计算,但他并不真正理解它。拉斐尔·邦贝利(Rafael Bombelli)详细地研究了这个问题,并因此被人们认为是复数的发现者。
红色字体部分为判别式
。
当
时,方程有一个实根和两个共轭复根;
当
时,方程有三个实根:当
时,方程有一个三重实根;
当
时,方程的三个实根中有两个相等;
当
时,方程有三个不等的实根。
,其中
。
若令
,则



令
为域,可以进行开平方或立方运算。要解方程只需找到一个根
,然后把方程
除以
,就得到一个二次方程,而我们已会解二次方程。
在一个代数封闭域,所有三次方程都有三个根。复数域就是这样一个域,这是代数基本定理的结果。
解方程步骤:
接下来,
和
是
和
的立方根,适合
,
,最后得出
。
在域
里,若
和
是立方根,其它的立方根就是
和
,当然还有
和
,其中
,是1的一个复数立方根。
因为乘积
固定,所以可能的
是
,
和
。因此三次方程的其它根是
和
。
最先尝试解的三次方程是实系数(而且是整数)。因为实数域并非代数封闭,方程的根的数目不一定是3个。所遗漏的根都在
里,就是
的代数闭包。其中差异出现于
和
的计算中取平方根时。取立方根时则没有类似问题。
可以证明实数根数目依赖于辅助方程的判别式
,
注意到实系数三次方程至少有一实根存在,这是因为非常数多项式在
和
的极限是无穷大,对奇次多项式这两个极限异号,又因为多项式是连续函数,所以从介值定理可知它在某点的值为0。
解
。
我们依照上述步骤进行:
该方程的另外两个根:
这是一个历史上的例子,因为它是邦别利考虑的方程。
方程是
。
从函数
算出判别式的值
,知道这方程有三实根,所以比上例更容易找到一个根。
前两步都不需要做,做第三步:
,
,
。
和
是
的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。
我们解出
和
。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部:现设
。
得到
和
,也就是
,而
是其共轭:
。
归结得
,可以立时验证出来。
其它根是
和
,其中
。
当
是负,
相关
- 高碳富勒烯高碳富勒烯为多于70个碳原子组成的富勒烯分子,是六边形和五边形组合成的笼型稠环结构,多边形的每个顶点都有一个碳分子、每个边缘都有一个键结。1990年, W. Krätchmer 和 D.
- 圣多明各200px
人圣多明各或圣多明戈(西班牙语:Santo Domingo),全名古斯曼的圣多明各(Santo Domingo de Guzmán),当地汉语人士又称之为多京,位于多米尼加共和国的国家特区内,为多米尼加的首
- 厄琉息斯秘仪节庆:厄琉息斯秘仪(希腊语:Ἐλευσίνια Μυστήρια)是古希腊时期位于雅典西北部厄琉息斯的一个秘密教派的年度入会仪式,这个教派崇拜女神得墨忒耳和其女儿珀耳塞福
- 雅可比Paul Albert Gordan卡尔·古斯塔夫·雅各布·雅可比(德语:Carl Gustav Jacob Jacobi,1804年12月10日-1851年2月18日)是一位普鲁士数学家,被广泛的认为是历史上最杰出的数学家之一
- 空心菜蕹菜(学名:Ipomoea aquatica;“蕹”,拼音:wèng),又称空心菜、通菜、通心菜、壅菜、瓮菜、应菜、藤菜及葛菜,为一年生草本植物,茎蔓性,中空,节上能生不定根。应菜,蕹菜(南方草木状、嘉祐
- MOODYZMOODYZ(日语:ムーディーズ)是日本一家成人影片制造商,隶属于北都集团,于2000年成立,总部位日本石川县加贺市美岬町1-1 AVC运动中心。MOODYZ的前身为于1996年成立的Mr.President,200
- 世界工业设计大会世界工业设计大会(英文World Industrial Design Conference,缩写WIDC)是由中国工业设计协会联合多所设计组织、机构、企业以及院校等发起的工业设计行业国际会议。2016年12月2
- 普尔莫角国家公园普尔莫角国家公园是墨西哥的国家公园,由南下加利福尼亚州负责管辖,始建于1995年6月6日,面积71平方公里,受半干旱气候影响,该地区有226种珊瑚。
- 张似旭张似旭(,1900年-1940年7月19日)上海《大美晚报》中文版发行人,因宣传中国抗日战争死于极司非尔路76号特务暗杀。1900年,张似旭出生于中国广东省饶平县隆都白水湖乡(今属汕头市澄海
- 无聊艺术无聊艺术,此概念为中国职业艺术家、批评家兼独立策展人王南溟所提出,相对于关注现实社会问题、呈现观点或立场的“批判性艺术”(以渠岩《权力空间》摄影为例),“无聊艺术”虚假而