三次方程

✍ dations ◷ 2025-09-18 10:02:10 #初等代数,方程,多项式

三次方程是未知项总次数最高为3的整式方程,一元三次方程一般形式为

其中 a , b , c , d ( 0 ) {\displaystyle a,b,c,d(\neq 0)} 是属于一个域的数字,通常这个域为R或C。

本条目只解释一元三次方程,而且简称之为三次方程。

中国唐朝数学家王孝通在武德九年(626年)前后所著的《缉古算经》中建立了25个三次多项式方程和提出三次方程实根的数值解法。

波斯数学家欧玛尔·海亚姆(1048年-1123年)通过用圆锥截面与圆相交的方法构建了三次方程的解法。他说明了怎样用这种几何方法利用三角法表得到数字式的答案。

中国南宋的数学家秦九韶在他1247年编写的《数书九章》一书中提出了高次方程的数值解法秦九韶算法,提出“商常为正,实常为负,从常为正,益常为负”的原则。

在十六世纪早期,意大利数学家费罗找到了能解一种三次方程的方法,也就是形如 x 3 + m x = n {\displaystyle x^{3}+mx=n} 的方程。事实上,如果我们允许 m , n {\displaystyle m,n} 是复数,所有的三次方程都能变成这种形式,但在那个时候人们不知道复数。

尼科洛·塔尔塔利亚被认为是最早得出三次方程一般解的人。1553年他在一场数学竞赛中解出所有三次方程的问题。随后卡尔丹诺拜访了塔尔塔利亚请教三次方程解法并得到了启发。卡尔丹诺注意到塔尔塔利亚的方法有时需要他给复数开平方。他甚至在《数学大典》里包括了这些复数的计算,但他并不真正理解它。拉斐尔·邦贝利(Rafael Bombelli)详细地研究了这个问题,并因此被人们认为是复数的发现者。

红色字体部分为判别式 Δ {\displaystyle \Delta }

Δ > 0 {\displaystyle \Delta >0} 时,方程有一个实根和两个共轭复根;

Δ = 0 {\displaystyle \Delta =0} 时,方程有三个实根:当

时,方程有一个三重实根;

时,方程的三个实根中有两个相等;

Δ < 0 {\displaystyle \Delta <0} 时,方程有三个不等的实根。

a x 3 + b x 2 + c x + d = 0 {\displaystyle ax^{3}+bx^{2}+cx+d=0} ,其中 a 0 {\displaystyle a\neq 0}

若令 Δ = ( b 3 27 a 3 d 2 a + b c 6 a 2 ) 2 + ( c 3 a b 2 9 a 2 ) 3 = α 2 + β 3 < 0 {\displaystyle \Delta =\left({\frac {-b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\frac {bc}{6a^{2}}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}=\alpha ^{2}+\beta ^{3}<0} ,则

x 1 = b 3 a + 2 β cos {\displaystyle x_{1}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

x 2 = b 3 a + 2 β cos {\displaystyle x_{2}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

x 3 = b 3 a + 2 β cos {\displaystyle x_{3}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left}

K {\displaystyle K} 为域,可以进行开平方或立方运算。要解方程只需找到一个根 r {\displaystyle r} ,然后把方程 a x 3 + b x 2 + c x + d {\displaystyle ax^{3}+bx^{2}+cx+d} 除以 x r {\displaystyle x-r} ,就得到一个二次方程,而我们已会解二次方程。

在一个代数封闭域,所有三次方程都有三个根。复数域就是这样一个域,这是代数基本定理的结果。

解方程步骤:

接下来, u {\displaystyle u} v {\displaystyle v} U {\displaystyle U} V {\displaystyle V} 的立方根,适合 u v = p 3 {\displaystyle uv=-{\frac {p}{3}}} z = u + v {\displaystyle z=u+v} ,最后得出 x = z b 3 {\displaystyle x=z-{\frac {b'}{3}}}

在域 C {\displaystyle \mathbb {C} } 里,若 u 0 {\displaystyle u_{0}} v 0 {\displaystyle v_{0}} 是立方根,其它的立方根就是 ω u 0 {\displaystyle \omega u_{0}} ω 2 u 0 {\displaystyle \omega ^{2}u_{0}} ,当然还有 ω v 0 {\displaystyle \omega v_{0}} ω 2 v 0 {\displaystyle \omega ^{2}v_{0}} ,其中 ω = e 2 i π 3 = 1 + 3 i 2 {\displaystyle \omega =e^{\frac {2i\pi }{3}}={\frac {-1+{\sqrt {3}}i}{2}}} ,是1的一个复数立方根。

因为乘积 u v = p 3 {\displaystyle uv=-{\frac {p}{3}}} 固定,所以可能的 ( u , v ) {\displaystyle (u,v)} ( u 0 , v 0 ) {\displaystyle (u_{0},v_{0})} ( ω u 0 , ω 2 v 0 ) {\displaystyle (\omega u_{0},\omega ^{2}v_{0})} ( ω 2 u 0 , ω v 0 ) {\displaystyle (\omega ^{2}u_{0},\omega v_{0})} 。因此三次方程的其它根是 ω u 0 + ω 2 v 0 b 3 {\displaystyle \omega u_{0}+\omega ^{2}v_{0}-{\frac {b'}{3}}} ω 2 u 0 + ω v 0 b 3 {\displaystyle \omega ^{2}u_{0}+\omega v_{0}-{\frac {b'}{3}}}

最先尝试解的三次方程是实系数(而且是整数)。因为实数域并非代数封闭,方程的根的数目不一定是3个。所遗漏的根都在 C {\displaystyle \mathbb {C} } 里,就是 R {\displaystyle \mathbb {R} } 的代数闭包。其中差异出现于 U {\displaystyle U} V {\displaystyle V} 的计算中取平方根时。取立方根时则没有类似问题。

可以证明实数根数目依赖于辅助方程的判别式 Δ = q 2 4 + p 3 27 {\displaystyle \Delta ={\frac {q^{2}}{4}}+{\frac {p^{3}}{27}}}

注意到实系数三次方程至少有一实根存在,这是因为非常数多项式在 + {\displaystyle +\infty } {\displaystyle -\infty } 的极限是无穷大,对奇次多项式这两个极限异号,又因为多项式是连续函数,所以从介值定理可知它在某点的值为0。

2 t 3 + 6 t 2 + 12 t + 10 = 0 {\displaystyle 2t^{3}+6t^{2}+12t+10=0}

我们依照上述步骤进行:

该方程的另外两个根:

这是一个历史上的例子,因为它是邦别利考虑的方程。

方程是 x 3 15 x 4 = 0 {\displaystyle x^{3}-15x-4=0}

从函数 x x 3 15 x 4 {\displaystyle x\mapsto x^{3}-15x-4} 算出判别式的值 Δ = 13068 < 0 {\displaystyle \Delta =-13068<0} ,知道这方程有三实根,所以比上例更容易找到一个根。

前两步都不需要做,做第三步: x = u + v {\displaystyle x=u+v} U = u 3 {\displaystyle U=u^{3}} V = v 3 {\displaystyle V=v^{3}}

U {\displaystyle U} V {\displaystyle V} X 2 4 X + 125 = 0 {\displaystyle X^{2}-4X+125=0} 的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。

我们解出 U = 2 11 i {\displaystyle U=2-11{\mathrm {i} }} V = 2 + 11 i {\displaystyle V=2+11{\mathrm {i} }} 。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部:现设 u = a + b i {\displaystyle u=a+b{\mathrm {i} }}

得到 a = 2 {\displaystyle a=2} b = 1 {\displaystyle b=-1} ,也就是 u = 2 i {\displaystyle u=2-{\mathrm {i} }} ,而 v {\displaystyle v} 是其共轭: v = 2 + i {\displaystyle v=2+{\mathrm {i} }}

归结得 x = u + v = ( 2 i ) + ( 2 + i ) = 4 {\displaystyle x=u+v=(2-{\mathrm {i} })+(2+{\mathrm {i} })=4} ,可以立时验证出来。

其它根是 x = j ( 2 i ) + j 2 ( 2 + i ) = 2 + 3 {\displaystyle x'=j(2-{\mathrm {i} })+j^{2}(2+{\mathrm {i} })=-2+{\sqrt {3}}} x = j 2 ( 2 i ) + j ( 2 + i ) = 2 3 {\displaystyle x''=j^{2}(2-{\mathrm {i} })+j(2+{\mathrm {i} })=-2-{\sqrt {3}}} ,其中 j = 1 + 3 i 2 {\displaystyle j={\frac {-1+{\sqrt {3}}i}{2}}}

Δ {\displaystyle \Delta } 是负, U {\displaystyle U}

相关

  • 单股反链病毒目单股反链病毒目(学名:Mononegavirales),核糖核酸病毒的一种,下面有8个科。
  • 金盏花金盏花(Calendula officinalis)又名金盏菊,在古代西方作为药用或染料,也可以作为化妆品或食用,其叶和花瓣可以食用,因此可以用作菜肴的装饰。一年或二年生草本植物,单叶互生,在基部
  • 液化液化指物质由气态转变为液态的过程。气体液化后体积会变成原来的几千分之一,同时放出大量的热,不同的气体具有不同温度和压强的液化临界点,因此加压的同时必须冷却以吸收热。有
  • 十二经脉十二经脉是手三阴经(肺、心包、心)、手三阳经(大肠、三焦、小肠)、足三阳经(胃、胆、膀胱)、足三阴经(脾、肝、肾)的总称。十二经脉是经络系统的主体,故又称为正经。十二经脉在体表左
  • 布鲁克林博物馆布鲁克林博物馆(英语:Brooklyn Museum)位于美国纽约布鲁克林区,是一座综合性的艺术、历史博物馆。占地560,000平方英尺(52,000平方米),本博物馆的实际容量是纽约市第三大,大约收藏一
  • 埃亚德马纳辛贝·埃亚德马(法语:Gnassingbé Eyadéma,1937年12月26日-2005年2月5日),多哥终身总统(1967年—2005年),执政达38年,在非洲国家元首中,在位期间仅次于摩洛哥国王哈桑二世。生于多哥
  • 四季豆菜豆(学名:Phaseolus vulgaris)通称包括云藊豆、白肾豆、架豆、芸豆、刀豆、玉豆、去豆、四季豆等,一年生豆科植物,是餐桌上的常见蔬菜之一。油豆角(Phaseolus vulgaris var. chin
  • 橡子槲果(英语:acorn),又称橡子,广义为山毛榉科栎属的橡、栎、槲等果实(而不是种子)的总称,狭义指栎树的果实,富含淀粉。山毛榉科植物是亚热带和温带森林的主要构成树种。其中橡树是亚热
  • 许家窑人许家窑人,最初在1973年被发现于山西省阳高县许家窑村和河北省阳原县侯家窑村之间,距今约10.4万年到12.5万年。属直立人向早期智人过渡的类型。体制特征有的像北京人,有的则像欧
  • 龙湾镇 (雄县)龙湾镇,是中华人民共和国河北省保定市雄县下辖的一个乡镇级行政单位。龙湾镇下辖21个行政村(22个自然村):龙东村、龙西村、龙南村、龙北村、道一村、道二村、道三村、道四村、东