正七边形镶嵌

✍ dations ◷ 2025-06-08 03:20:28 #镶嵌,双曲结构,双曲面镶嵌

在几何学中,正七边形镶嵌(英语:Heptagonal tiling)是一种由正七边形拼合,并且将正七边形重复排列组合,并让图形完全拼合,而且没有空隙或重叠的几何构造。

正七边形镶嵌是一种双曲正镶嵌,由正七边形组成,在施莱夫利符号中以{7,3}来表示,因为每个顶点周围都有3个正七边形。

三个正七边形由于超过360度,因此无法在平面作出,但若硬将正七边形边对边接合,将会变成一个马鞍形,且每个顶点皆会落在一个双曲抛物面上。

正七边形镶嵌无法在一个平面上构造,因为每个顶点的角度 128 4 7 × 3 = 385 6 7 {\displaystyle 128{\frac {4}{7}}\times 3=385{\frac {6}{7}}} 超过了360度,但可以在一个双曲抛物面上构造,因此正七边形镶嵌也是罗式几何或双曲几何中讨论的几何构造。

Poincare halfplane heptagonal hb.svg
一个正七边形镶嵌 (黑线)在庞加莱半平面模型上
H2 tiling 237-1.png
一个正七边形镶嵌 (蓝线)在双曲抛物面的庞加莱圆盘模型上

正七边形镶嵌在拓扑上与一系列用施莱夫利符号{n,3}与{7,n}表示的(广义)多面体一直延伸到双曲镶嵌:

当n大于2时,所有{7,n}都是双曲镶嵌:

正七边形镶嵌可以透过截角操作或其他康威变换得到一系列与之相关的半正镶嵌,其与正七边形镶嵌拥有相似的对称性(*732)或+(732):

七阶三角形镶嵌的对称群是(2,3,7)三角群,且其根本域为(2,3,7)施瓦茨三角形。这是最小的双曲施瓦茨三角形,因此,由赫尔维茨的同构定理的证明,该镶嵌完全密铺整个赫尔维茨曲面(黎曼曲面与最大对称群),给出一个三角对称群等于其构群为黎曼曲面。其中最小的赫尔维茨曲面是克莱因商(Klein quartic)亏格3、168阶、包含56个七边形镶嵌在一起,形成24个顶点。

其对偶七阶三角形镶嵌具有相同的对称群,因而产生三角形镶嵌赫尔维曲面。

相关

  • 水果生果是指可以生食的植物果实;主要熟食之植物果实则称蔬菜。生产生果的植物称为果树。生果含大量的水溶糖分,很多还含有挥发性芳香物质。植物果实中汁液多者,亦称水果;相反,少汁液
  • 马赛1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。马赛(普罗旺斯语:Marselha 或;法语:Marseille,马赛口音: ,巴黎口音)是法国第二大城市和第三大都
  • 保健科学医疗卫生科学(又称:医疗科学、健康科学、保健科学)与应用科学息息相关,旨在运用理工及技术之知识,解决与生物健康有关的问题。除了传统的医学外,此类学科还包括护理、公共卫生等学
  • 陈 军陈军(1967年9月-)是一位中国无机化学家,南开大学教授。1967年出生于安徽宿松,1989年毕业于南开大学,1999年在澳大利亚伍伦贡大学获得博士学位。2017年当选为中国科学院院士。
  • 乱伦乱伦可以指:
  • 恋靴恋靴(英文:Boot Fetishism),一种与靴相关的恋物。这种爱好也被称为恋靴癖,有恋靴心理或行为的人称作恋靴者。它和恋鞋非常相似,许多由高跟鞋产生的性吸引也可由靴产生。在大多数情
  • 联合国政府间气候变化专业委员会政府间气候变化专门委员会(英语:Intergovernmental Panel on Climate Change,缩写IPCC;又译政府间气候变化专业委员会、跨政府气候变化委员会等)是一个附属于联合国之下的跨政府
  • 潘 菽潘菽(1897年7月13日-1988年3月26日),又名潘有年,字水菽,江苏宜兴人,中国心理学家,教育家。1897年(清朝光绪二十三年)7月13日,潘菽出生于江苏省宜兴县陆平村的书香门第,潘菽6岁时开始在父
  • San Francisco Chronicle《旧金山纪事报》(英语:San Francisco Chronicle,又称《旧金山新闻》)是北加利福尼亚地区发行量最大的报纸,同时也是美国发行量最大的报纸之一,订户主要集中在旧金山湾区,但该报发
  • 义乌义乌市,是中国浙江省金华市所辖的一个县级市。义乌为浙江省综合实力第三大县市,也是中国经济最发达的县级市之一,其综合竞争力2010年位居浙江省第三位,全国百强县(市)第八位。2005