在数论中,佩服数(英文:Admirable numbers),是指若一个正整数除了本身外之所有的约数,存在一个约数)之和。是n的其中一个约数。
例如20的约数有1、2、4、5、10、20,其因数和函数的结果为,存在一个约数1,使得,所以20可称为佩服数。
佩服数是过剩数的一个子集,换句话说所有佩服数都是过剩数。
最小的一些佩服数是:
以上列出的佩服数都是偶数。最小的奇佩服数是945,同时最小的奇过剩数、奇半完全数也是945。
前几个奇佩服数是:
连续的佩服数比连续的过剩数还要少。在1012以下,只有两组连续佩服数,分别是(29691198404, 29691198405)和(478012798575, 478012798576)。
佩服数的分布并不像过剩数那样,过剩数有着非零的自然密度,而佩服数的成长率非线性的,例如小于100的佩服数有13个、小于1,000的佩服数有65个、小于10,000的佩服数有379个(OEIS中的数列A109727),其密度随着数字尺度变大而逐渐减少。
所有大于3的素数的六倍都是佩服数,更精确地说,所有的素数与素因数不含该素数之完全数的乘积都是佩服数。
有一种与佩服数类似但不太一样的定义:一个正整数除了本身外之所有约数中,存在一个约数,将其他不是本身的约数相加后,再减掉,等于本身。有这些性质的前几个数有:
例如18的约数有1、2、3、6、9、18有一个约数3,使得。
有这种性质的数最小的奇数是173369889,同时也是最小的奇拟完全数(OEIS中的数列A181595),但不是佩服数。
特别的,这些数字正好与盈完全数(Abundant-perfect numbers)重叠,盈完全数的定义为:自己的约数和(不包含自己)减去自己得到的数可以整除自己。
符合这种定义的数未必是佩服数,例如18虽然符合这种定义,但并未符合佩服数的定义,因此18不是佩服数。
萨克斯参考了亲和数的定义,定义了一个新的数叫做相容数(compatible numbers),其定义为有一对数字N和M,分别各存在一个约数dN和dM,N将其他不是本身、不是dN的约数相加后,再减掉dN,得到M、而M将其他不是本身、不是dM的约数相加后,再减掉dM,得到N。
例如30和40:
前几对相容数是:
有一种与佩服数类似但相反的定义:若一个正整数除了本身外之所有约数,存在一个约数d',将其他不是本身的约数相加后,再加上d',等于本身。有这些性质的前几个数有:
例如10的约数有1、2、5、10有一个约数2,使得
特别的,这些数字正好与亏完全数(Deficient-perfect numbers)重叠,亏完全数的定义为:自己减去自己的约数和(不包含自己)得到的数可以整除自己,在这个定义中1也符合,因为1不含自己的约数和是0,1减去零是1,当然可以整除1。
最小的几个亏完全数是:
所有二的乘幂都是亏完全数,除了二的乘幂之外的亏完全数有:
楚姆克勒数(Zumkeller numbers)是指约数可以分为相同总和的两组数字。所有佩服数都是楚姆克勒数,因为佩服数中的相减约数(即其他约数和减去此约数会等于本身的那个约数)以外的约数存在一个约数,其与佩服数中的相减约数相加后会等于其他约数之和。