布雷斯悖论(英语:Braess's paradox)是1968年由德国数学家迪特里希·布雷斯(德语:Dietrich Braess)提出的一个悖论,它是指在一个交通网络上增加一条路段反而使网络上的旅行时间增加;这一附加路段不但没有减少交通延滞,反而降低了整个交通网络的服务水准。这种出力不讨好且与人们直观感受相背的交通网络现象主要源于纳什均衡点并不一定使社会最优化。
考虑右图中的交通网,有4000辆车打算在其中路上通行。通过的时间从起点到A点和从B点到终点均是路上车的数量除以100,而从起点到B点和从A点到终点均是固定的45分钟。如果近路不存在(即交通网上只有4条路),从起点到A点到终点需要的时间是 ,而从起点到B点到终点需要的时间是 。如果其中一条路的通过时间较短,是不可以达到纳什均衡点的,因为理性的司机都会选择较短的路。因为有4000辆车,从 可以解得平均 这样每条路的平均通过时间都是 分钟。
现在假设有了一条近路(如虚线所示),其通过时间接近于0,在这种情况下,所有的司机都会选择从起点到A点这条线路,因为就算所有的车都走这条路,通过时间也不过40分钟,小于起点到B点的45分钟。到达A点之后,所有的司机都会选择从用接近0的时间行驶到到B再到终点,因为就算所有的车都走这条路,通过时间也不过40分钟,小于A点到终点的45分钟。这样所有车的通过时间是 分钟,比不存在近道的时候还多了15分钟。就算不走这条路,时间也不会缩短,因为原先的路线(起点→A→终点;起点→B→终点)的时间都变成了85分钟。如果大家都约定好不走近路,那么都可以节约15分钟的时间。但是,由于单个的司机总是能从抄近道上获益,所以这种约定是不稳定的,布雷斯悖论便出现了。