布雷斯悖论

✍ dations ◷ 2025-12-02 15:00:11 #数学悖论,网络流,交通

布雷斯悖论(英语:Braess's paradox)是1968年由德国数学家迪特里希·布雷斯(德语:Dietrich Braess)提出的一个悖论,它是指在一个交通网络上增加一条路段反而使网络上的旅行时间增加;这一附加路段不但没有减少交通延滞,反而降低了整个交通网络的服务水准。这种出力不讨好且与人们直观感受相背的交通网络现象主要源于纳什均衡点并不一定使社会最优化。

考虑右图中的交通网,有4000辆车打算在其中路上通行。通过的时间从起点到A点和从B点到终点均是路上车的数量除以100,而从起点到B点和从A点到终点均是固定的45分钟。如果近路不存在(即交通网上只有4条路),从起点到A点到终点需要的时间是 A 100 + 45 {\displaystyle {\tfrac {A}{100}}+45} ,而从起点到B点到终点需要的时间是 B 100 + 45 {\displaystyle {\tfrac {B}{100}}+45} 。如果其中一条路的通过时间较短,是不可以达到纳什均衡点的,因为理性的司机都会选择较短的路。因为有4000辆车,从 A + B = 4000 {\displaystyle A+B=4000} 可以解得平均 A = B = 2000 {\displaystyle A=B=2000} 这样每条路的平均通过时间都是 2000 100 + 45 = 65 {\displaystyle {\tfrac {2000}{100}}+45=65} 分钟。

现在假设有了一条近路(如虚线所示),其通过时间接近于0,在这种情况下,所有的司机都会选择从起点到A点这条线路,因为就算所有的车都走这条路,通过时间也不过40分钟,小于起点到B点的45分钟。到达A点之后,所有的司机都会选择从用接近0的时间行驶到到B再到终点,因为就算所有的车都走这条路,通过时间也不过40分钟,小于A点到终点的45分钟。这样所有车的通过时间是 4000 100 + 4000 100 = 80 {\displaystyle {\tfrac {4000}{100}}+{\tfrac {4000}{100}}=80} 分钟,比不存在近道的时候还多了15分钟。就算不走这条路,时间也不会缩短,因为原先的路线(起点→A→终点;起点→B→终点)的时间都变成了85分钟。如果大家都约定好不走近路,那么都可以节约15分钟的时间。但是,由于单个的司机总是能从抄近道上获益,所以这种约定是不稳定的,布雷斯悖论便出现了。

相关

  • 未知的南方大陆未知的南方大陆(拉丁语:Terra Australis Incognita)是15世纪至18世纪时,于欧洲地图上出现的假想大陆。又称为“麦哲伦洲”(拉丁语:Magallanica / Magellanica)。明代《坤舆万国全图
  • 透明国际透明国际(英语:Transparency International)是一个监察贪污腐败的国际非政府组织。从1995年起,透明国际制定和每年公布腐败感知指数,提供一个可供比较的国际贪污状况列表。透明国
  • 键结断裂键结断裂,或简称断裂,是指分子在解离过程中的化学键分裂。分子经过键结断裂后,产生两个或两个以上的产物。键结断裂有2种形式:均匀断裂(homolytic cleavage)和非均匀断裂(heterolyt
  • 中南大羚中南大羚(学名:Pseudoryx nghetinhensis),又称为武广牛、安南锭角羚、剑角牛、索拉羚等,是偶蹄目下牛科中南大羚属中的单一物种,1992年才被发现,被誉为亚洲麒麟、亚洲独角兽(Asian u
  • 中黄蝠中黄蝠()是一种黄蝠,只于马达加斯加及留尼汪被发现。由于其栖息地被人破坏,中黄蝠被列为濒危物种。
  • 惯习惯习(Custom/Convention)是为社会所共识的,被规定的或是被广泛接受的一种习俗、规定或社会性的规范。有时,固定类型的规则或惯习将会成为法律。制定规范的法律有时会将惯习正式
  • 122毫米榴弹炮M1938 (M-30)122毫米榴弹炮M1938 (M-30)是一种苏联生产的121.92毫米榴弹炮。这种武器是20世纪30年代末期由F.F.彼得罗夫(俄语:Фёдор Фёдорович Петров)所领导的团队设
  • 毓椮奉恩辅国公毓椮(1913年5月8日-?),一等辅国将军溥荃第二子,母妻巴禹特氏,其父为锺沄,循郡王系第六代。他在民国二年四月(1913年)出生,民国十五年八月(1926年)过继为溥葵的嗣子,同时接替养父
  • 吉恩·怀尔德吉恩·怀尔德(英语:Gene Wilder,1933年6月11日-2016年8月29日)出生于美国威斯康辛州密尔沃基县密歇根湖畔的城市密尔沃基,是一个美国舞台和屏幕演员、导演、编剧、作家兼社会活动
  • 帕尔马公爵夫人玛丽亚·特雷莎萨伏依的玛丽亚·特蕾莎·费尔南达·菲莉丝塔·盖坦娜·皮娅(意大利语:Maria Teresa Fernanda Felicitas Gaetana Pia di Savoia,1803年9月19日-1879年7月16日)是两西西里王国王