图兰·帕尔

✍ dations ◷ 2025-04-26 12:10:47 #图兰·帕尔

图兰·帕尔(Turán Pál,匈牙利语发音:;1910年8月18日-1976年9月26日):271,又称保罗·图兰(Paul Turán),匈牙利数学家(英语:List of Hungarian mathematicians),主要研究极值组合(英语:Extremal combinatorics)。其与艾狄胥·帕尔(同为匈牙利数学家)长期合作,在46年间共同发表28篇论文。

1910年8月18日,图兰生于布达佩斯的犹太家庭。:271图兰和艾狄胥同一时期投稿中学数理期刊(英语:KöMaL)(KöMaL)通信解题比赛,两人皆名列前茅。1933年,图兰于皇家匈牙利帕兹马尼·彼得大学(现罗兰大学)完成师范学位,并继续深造,师从费耶尔·利波特(英语:Lipót Fejér),于1935年获哲学博士。:271

身为犹太人,图兰受大学入学限额(英语:Numerus clausus)所限,有几年无法取得教席。 1940年至44年间,其多次被送入匈牙利劳役团(英语:Labour service (Hungary))。据称某个法西斯守卫认出图兰,并可能保护了他,因为该守卫是工程师,亦曾参加数学竞赛,很欣赏图兰的数学研究。

1945年,图兰在母校任职副教授,并于1949年升任正教授。:272图兰两次结婚。1939年,他与科博尔·艾迪特(Kóbor Edit)结婚,育有儿子罗伯特(Róbert)。1952年,改为与数学家绍什·韦劳(英语:Vera Sós)结婚,育有子女利哲尔吉(György)及陶马什(Tamás)。:20

1976年9月26日,图兰在布达佩斯因白血病离世,享年66岁。:8

图兰主要研究数论,:4同时也有研究分析和图论,其贡献举例如下。

1934年,图兰简洁地证明了哈代-拉马努金定理(英语:Hardy–Ramanujan theorem)。该定理最先由哈代和拉马努金于1917年证明,其断言正整数 n {displaystyle n} 的互异质因数个数 ω ( n ) {displaystyle omega (n)} log log n {displaystyle log log n} 很接近,其中 log {displaystyle log } 为自然对数。图兰利用图兰筛(英语:Turán sieve),给出了新的简洁证明。从概率的角度看,他估计了 ω ( n ) {displaystyle omega (n)} log log n {displaystyle log log n} 的方差。豪拉斯·加博尔(英语:Gábor Halász (mathematician))评论说:“该证明的重要性在于其创始了概率数论(英语:probabilistic number theory)。”:16图兰-库比柳斯不等式(英语:Turán–Kubilius inequality)为上述结果的推广。:5 :16

图兰对质数在等差数列中的分布感兴趣。其称不同剩余类中质数分布参差不齐的情况为“质数赛跑”(英语:prime number race)。:5图兰与斯塔尼斯瓦夫·克纳波夫斯基(英语:Stanisław Knapowski)合作,证明了有关切比雪夫偏差(英语:Chebyshev's bias)的结果。图兰亦有研究黎曼猜想,并为此发明了幂和法(见下段)。艾狄胥称图兰为不信黎曼猜想的‘不信者’、‘异教徒’。:3

图兰在分析方面有不少工作与其数论研究密切相关。此外,其证明了图兰不等式(英语:Turán's inequalities),描述不同阶数的勒壤得多项式的值的大小,又与艾狄胥合作证明了艾狄胥-图兰不等式(英语:Erdős–Turán inequality)。

艾狄胥谈及图兰:“1940年至1941年间,他开创了图论中的极值问题这个新领域,该领域现为组合学成长最快的分支。”:4弗龙克尔·彼得(英语:Péter Frankl)谈及图兰“因为是犹大人而被捉进集中营。有纸和笔就能做数学,但在营中什么也没有。所以他创造了什么都不需要的组合数学。”

艾狄胥和弗龙克尔提及的领域现称为极值图论(英语:extremal graph theory)。图兰在该方面最为人熟知的成果为图兰定理,其给出顶点数为 n {displaystyle n} 且无完全子图 K r + 1 {displaystyle K_{r+1}} 的图的边数最大值。他构造了图兰图(英语:Turán graph) T n , r {displaystyle T_{n,r}} ,其为完全二部图的推广,且边数取得上述定理中的最大值。克瓦里-绍什-图兰定理(英语:Kővári–Sós–Turán theorem)给出已知顶点数且无完全二部子图 K t , t {displaystyle K_{t,t}} 的二部图边数的上界。此外,图兰提出了图兰砖厂问题,即求完全二部图的交叉数。

图兰发明幂和法(英语:Turán's method),以研究黎曼猜想。:9–14该方法给出型如

的和的下界,因而得名。:319

该方法在解析数论、复分析、数值分析、微分方程、超越数论等方面皆有应用。此外,还适用于估计函数在圆盘内的零点数目。:320

相关

  • SPSSSPSS是统计产品与服务解决方案(Statistical Product and Service Solutions)的简称,为IBM公司的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关
  • 人型总科猿是灵长目人猿总科(学名:Hominoidea)动物的通称,包括两个科。虽然人们常把猿猴并称,有时候将猴也称为猿,而猿有时也会称做是猴,不过他们在生物学上是不同的动物。两者的主要区别在
  • 巯基乙酸巯基乙酸是一种有机化合物,结构式HSCH2COOH。纯品为无色有令人不愉快气味的透明液体,工业品常为无色至微黄色。与水、乙醇、乙醚混溶。露置于空气中时,迅速发生氧化,少量金属离
  • 维尔纳·冯·勃洛姆堡维尔纳·爱德华·弗里茨·冯·勃洛姆堡(Werner Eduard Fritz von Blomberg,1878年9月2日-1946年3月14日),又译布隆伯格,是纳粹德国陆军元帅,曾任纳粹德国国防部长、武装部队总司令
  • 马丁·瓦尔马丁·海因里希森·瓦尔 (Martin Henrichsen Vahl,1749年10月12日-1804年12月24日)为丹麦-挪威动物学家及植物学家。
  • 陆以湉陆以湉(1802年-1865年),字薪安,一字定圃,号敬安,浙江桐乡人。陆以湉生于嘉庆六年(1802年),博极群书,中道光十六年丙申(1836年)科进士,分发湖北。以父命改从教职,道光十九年(1839年)为台郡教授
  • 帕克·黑尔IDW冲锋枪帕克·黑尔IDW冲锋枪(前身为布希曼冲锋枪)是一款发射9×19毫米帕拉贝鲁姆弹的冲锋枪/个人防卫武器。IDW的前身,布希曼冲锋枪的原型枪射速高达1,400发/分钟。由于射速过高令射手难
  • 配资配资,中国证券市场术语,即使用借贷或变相借贷的方式以交易人投入的较小资金,“配”上借贷或变相借贷人的资金,用来购买价值比交易人投入资金大许多倍的证券。是一种增加投资平均
  • 李埈镕李埈镕(영선군 이준용,1870年6月25日-1917年3月22日),字景极,号石庭、又号松亭,本贯全州李氏,李载冕之子,朝鲜摄政公兴宣大院君嫡长孙,第二十六代王高宗的侄子。朝鲜的贵族、军人、政
  • 安托万·帕特克安托万·诺贝尔·德·帕特克(法语:Antoine Norbert de Patek,1812年6月14日–1877年3月1日),出身贵族,家徽为Prawdzic(波兰语:Prawdzic (herb szlachecki))为钟表制造业先锋,百达翡丽