首页 >
比尔-朗伯定律
✍ dations ◷ 2025-08-09 03:49:14 #比尔-朗伯定律
比尔-朗伯定律(Beer–Lambert law),又称比尔定律或比耳定律(Beer's law)、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。一束单色光照射于一吸收介质表面,在通过一定厚度的介质后,由于介质吸收了一部分光能,透射光的强度就要减弱。吸收介质的浓度愈大、介质的厚度愈大,则光强度的减弱愈显著,其关系为:其中:比尔-朗伯定律的物理意义是,当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度
A
{displaystyle A}
与吸光物质的浓度
c
{displaystyle c}
及吸收层厚度
l
{displaystyle l}
成正比。当介质中含有多种吸光组分时,只要各组分间不存在着相互作用,则在某一波长下介质的总吸光度是各组分在该波长下吸光度的加和,这一规律称为吸光度的加合性。系数
K
{displaystyle K}
:两种吸收系数之间的关系为:
κ
=
a
M
m
{displaystyle kappa =aM_{m}}
。物质对光吸收的定量关系很早就受到了科学家的注意并进行了研究。皮埃尔·布格(Pierre Bouguer)和约翰·海因里希·朗伯(Johann Heinrich Lambert)分别在1729年和1760年阐明了物质对光的吸收程度和吸收介质厚度之间的关系;1852年奥古斯特·比尔(August Beer)又提出光的吸收程度和吸光物质浓度也具有类似关系,两者结合起来就得到有关光吸收的基本定律布格-朗伯-比尔定律,简称比尔-朗伯定律。假设一束强度为
I
0
{displaystyle I_{0}}
的平行单色光(入射光)垂直照射于一块各向同性的均匀吸收介质表面,在通过厚度为
l
{displaystyle l}
的吸收层(光程)后,由于吸收层中质点对光的吸收,该束入射光的强度降低至
I
1
{displaystyle I_{1}}
,称为透射光强度。物质对光吸收的能力大小与所有吸光质点截面积的大小成正比。设想该厚度为
l
{displaystyle l}
的吸收层可以在垂直于入射光的方向上分成厚度无限小的多个小薄层
d
{displaystyle {rm { d}}}
l
{displaystyle l}
,其截面积为
S
{displaystyle S}
,而且每个薄层内,含有吸光质点的数目为
d
{displaystyle {rm { d}}}
n
{displaystyle n}
个,每个吸光质点的截面积均为
a
{displaystyle a}
。因此,此薄层内所有吸光质点的总截面积
d
{displaystyle {rm { d}}}
S
=
a
{displaystyle S=a}
d
{displaystyle {rm { d}}}
n
{displaystyle n}
。假设强度为
I
{displaystyle I}
的入射光照射到该薄层上后,光强度减弱了
d
{displaystyle {rm { d}}}
I
{displaystyle I}
。
d
{displaystyle {rm { d}}}
I
{displaystyle I}
是在小薄层中光被吸收程度的量度,它与薄层中吸光质点的总截面积
d
{displaystyle {rm { d}}}
S
{displaystyle S}
以及入射光的强度
I
{displaystyle I}
成正比,也就是负号表示光强度因吸收而减弱,k1 为比例系数。假设吸光物质的浓度为 c,则上述薄层中的吸光质点数为代入上式,合并常数项并设
k
2
=
6.02
×
10
23
k
1
a
S
{displaystyle k_{2}=6.02times 10^{23}k_{1},aS}
,经整理得对上式进行定积分,则有上式中
log
10
I
0
I
1
{displaystyle log _{10}{frac {I_{0}}{I_{1}}}}
称为吸光度(
A
{displaystyle A}
);而透射光强度与入射光强度之间的比值
I
1
I
0
{displaystyle {frac {I_{1}}{I_{0}}}}
称为透射比,或称透光度(
T
{displaystyle T}
),其关系为:即比尔-朗伯定律。比尔-朗伯定律的成立是有前提的,即:根据比尔-朗伯定律,当吸收介质厚度不变时,
A
{displaystyle A}
与
c
{displaystyle c}
之间应该成正比关系;但实际测定时,标准曲线常会出现偏离比尔-朗伯定律的现象,有时向浓度轴弯曲(负偏离),有时向吸光度轴弯曲(正偏离)。造成偏离的原因是多方面的,其主要原因是测定时的实际情况不完全符合使比尔-朗伯定律成立的前提条件。物理因素有:化学因素有:比尔-朗伯定律可以用于通过分光光度法,以分析混合物的性质。这种方法不需要对于样品进行过多的预操作。例如测定血浆中胆红素的浓度。纯胆红素的光谱是已经确定了的,因此它的摩尔吸收系数也是确定的。需要测量两个波长的光的吸收情况,其中第一个是胆红素特定的波长,而另一个则是为了修正可能存在的干涉。从而可以得到浓度c = A修正 / κ。再例如,在一个更复杂的例子中,溶液中有两种溶质,浓度分别为c1 和 c2。此时,单位长度下,任何波长λ的吸光度为:因此,如果对两个波长进行测量,则可以得到两个方程,形成一个二元一次方程组。此时只要知道两个波长下,两个溶质的摩尔吸收系数κ1 和 κ2,那么就可以求出它们的浓度c1 和 c2。如果溶液中有更多溶质,也可以通过这种方法求出各溶质的浓度。如果有n种溶质,只需要测量n个波长下的吸收度即可。这种方法广泛应用于红外光谱学和近红外光谱学,用以分析聚合物降解和氧化。6微米下,羰基的吸收度十分容易测量,因此聚合物的氧化程度也很容易得到。比尔-朗伯定律也可应用于大气当中,用以描述阳光和星光通过大气时的衰减状况。此时,除了吸收之外,还要考虑大气散射。大气中的比尔-朗伯定律的形式为:其中,这条方程可以用于反推浮质的光学厚度
τ
a
{displaystyle tau _{a}}
,这对于卫星图像的修正和计算浮质在大气中的角色都十分重要。当光穿过大气层时,空气的密度并非常量,因此原方程应作以下修正:其中z是在大气中走过的路程,其它符号在上文已有定义。 这在上面大气方程中的每一个
τ
x
{displaystyle tau _{x}}
里面已经考虑。
相关
- 移植物对抗宿主疾病移植物对抗宿主疾病(Graft-versus-host disease)简称GvHD,是在移植来自其他人身上的组织及器官(英语:allotransplantation)后产生的并发症。GvHD一般是和骨髓移植有关,但此概念也可
- 溶血溶血反应泛指红血球的不正常分解死亡的现象。溶血是指红血球的细胞膜因物理因素、化学因素、生物因素等因素受损破裂,内部的原生质从细胞漏出令红血球死亡的现象。“溶血反应
- 锂电池锂电池是以锂金属或锂合金为阳极材料,使用非水电解质溶液的电池,锂电池与锂离子电池不一样的是,前者是一次电池,后者是充电电池。锂电池的发明者是爱迪生。由于锂金属的化学特性
- 骨内给药骨内针(intraosseous vascular access)是利用骨骼给药的方式。在1922dc Drinker教授提出骨髓并不会塌陷,可以将之视为静脉用以注射药剂,因此开始有了骨内针intraaosseous vascul
- 碱性饮食碱性饮食(英语:Alkaline diet)也被称为碱性灰烬饮食(alkaline ash diet)、碱酸饮食(alkaline acid diet)、酸灰烬饮食(acid ash diet)或是酸碱饮食(acid alkaline diet)泛指一类被认为
- 沸腾管沸腾管(Boiling Tube)又称为大试管,是一种在实验室常见的玻璃容器,它的大小、长度和容量均比一般试管大。与一般试管不一样,沸腾管能承受本生灯的高热而不破裂。它的开口比一般
- 勒阿弗尔1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。勒阿弗尔(法语:Le Havre,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SI
- 地理分布世界生物地理分区是指在历史发展过程中形成而在现代生态条件下存在的许多生物类型的总体,是在历史因素和生态因素共同作用下形成的。动植物的种或其他分类类群,最初是从一个地
- 罗伯特二世约翰二世罗伯特·斯图尔特 (奥尔巴尼公爵)亚力山大,巴肯伯爵简·斯图尔特凯瑟琳·斯图尔特戴维,凯斯内斯伯爵沃尔特,伯爵的城堡托马斯·斯图尔特 伊莎贝尔·斯图尔特罗伯特二
- 潜热潜热,在热化学中,是物质在物态变化(相变)过程中,在温度没有变化的情况下,吸收或释放的能量。英文 latent (heat) 这个术语最初是由约瑟夫·布雷克发明,约于1750年从拉丁文的“later