匹配滤波器

✍ dations ◷ 2025-08-29 10:40:18 #估计理论,电信理论,信号处理,滤波器理论

在信号处理中,匹配滤波器可以用来解调基频带脉冲信号,基频带脉冲信号意指信号内容为同一波形信号乘上一个常数,在每个周期出现,每个周期中代表着或多或少的信息量。匹配滤波器解调出来的结果其SNR (Signal Noise Ratio)为最大的,匹配滤波器需要事先知道

1.传送的信号

2.信号的同步

才能解调出传送的信号。

此外,匹配滤波器也可用于模式识别 、相似度测试(similarity measure)。

假设g(t):传送信号

w(t):可加性高斯白噪声

x(t) = g(t) + w(t)

h(t):未知波形

y(t):解调结果

1. x ( t ) = g ( t ) + w ( t ) {\displaystyle 1.x(t)=g(t)+w(t)}

2. y ( t ) = h ( t ) {\displaystyle 2.y(t)=\ast h(t)}  

= g ( t ) h ( t ) + w ( t ) h ( t ) {\displaystyle =g(t)\ast h(t)+w(t)\ast h(t)}

= G ( t ) + N ( t ) {\displaystyle =G(t)+N(t)}


3. S N R = | G ( T ) | 2 / E | {\displaystyle 3.SNR=|G(T)|^{2}/E|}

SNR = 信号瞬间功率 / Noise平均功率

信号瞬间功率

| G ( T ) | 2 = H ( f ) G ( f ) e j 2 π f T d f {\displaystyle |G(T)|^{2}=\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}

噪声平均功率

E = N 0 2 | H ( f ) | 2 d f {\displaystyle E={\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}

S N R = H ( f ) G ( f ) e j 2 π f T d f N 0 2 | H ( f ) | 2 d f {\displaystyle SNR={\frac {\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

| H ( f ) | 2 e j 2 π f T d f | G ( f ) e j 2 π f T | 2 d f N 0 2 | H ( f ) | 2 d f {\displaystyle \leq {\frac {\int _{-\infty }^{\infty }|H(f)|^{2}e^{j2\pi fT}\,df\int _{-\infty }^{\infty }|G(f)e^{j2\pi fT}|^{2}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

= 2 N 0 | G ( f ) | 2 d f {\displaystyle ={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

4. 当

H o p t ( f ) = k {\displaystyle H_{opt}(f)=k^{*}} , S N R m a x = 2 N 0 | G ( f ) | 2 d f {\displaystyle SNR_{max}={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

所以

h o p t ( t ) = k G ( f ) e j 2 π f T e j 2 π f t d f {\displaystyle h_{opt}(t)=k\int _{-\infty }^{\infty }G(-f)e^{-j2\pi fT}e^{j2\pi ft}\,df}

= k G ( z ) e j 2 π f ( T t ) d z {\displaystyle =k\int _{-\infty }^{\infty }G(z)e^{-j2\pi f(T-t)}\,dz}

= k g ( T t ) {\displaystyle =kg(T-t)}

(备注)Cauchy-Schwartz inequality:

| A ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|A(x)|^{2}\,dx<\infty } | B ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|B(x)|^{2}\,dx<\infty }

| A ( x ) B ( x ) d x | 2 | A ( x ) | 2 d x | B ( x ) | 2 d x {\displaystyle |\int _{-\infty }^{\infty }A(x)B(x)\,dx|^{2}\leq \int _{-\infty }^{\infty }|A(x)|^{2}\,dx\int _{-\infty }^{\infty }|B(x)|^{2}\,dx}

A = k B {\displaystyle A=kB^{*}} 时,等号成立。

  x = s + v , {\displaystyle \ x=s+v,\,}

  R v = E { v v H } . {\displaystyle \ R_{v}=E\{vv^{\mathrm {H} }\}.\,}


S N R = | y s | 2 E { | y v | 2 } . {\displaystyle \mathrm {SNR} ={\frac {|y_{s}|^{2}}{E\{|y_{v}|^{2}\}}}.}


  | y s | 2 = y s H y s = h H s s H h . {\displaystyle \ |y_{s}|^{2}={y_{s}}^{\mathrm {H} }y_{s}=h^{\mathrm {H} }ss^{\mathrm {H} }h.\,}


  E { | y v | 2 } = E { y v H y v } = E { h H v v H h } = h H R v h . {\displaystyle \ E\{|y_{v}|^{2}\}=E\{{y_{v}}^{\mathrm {H} }y_{v}\}=E\{h^{\mathrm {H} }vv^{\mathrm {H} }h\}=h^{\mathrm {H} }R_{v}h.\,}

S N R = h H s s H h h H R v h . {\displaystyle \mathrm {SNR} ={\frac {h^{\mathrm {H} }ss^{\mathrm {H} }h}{h^{\mathrm {H} }R_{v}h}}.}

如果我们限制分母为1, 最大化 S N R {\displaystyle \mathrm {SNR} } 的问题可以被简化为最大化分子.

于是可以使用 拉格朗乘数

因为 s s H {\displaystyle ss^{\mathrm {H} }} 是一维, 他只有一个非零特征值. 此特征值=

若欲侦测一特定信号 h,我们可以将h时域反向并取共轭,当做滤波器。

一维信号


二维信号


模拟结果:

但由于卷积是线性的,当信号能量大,算出来的值也会跟着变大而有误差,因此我们需要标准化。


标准化公式


一维信号

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} ≠0

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} =0


二维信号

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} ≠0

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} = 0


标准化后的模拟结果:

相关

  • 哥德尔完备性定理哥德尔完备性定理是数理逻辑中重要的定理,在1929年由库尔特·哥德尔首先证明。它的最熟知的形式声称在一阶谓词演算中所有逻辑上有效的公式都是可以证明的。上述词语“可证明
  • 河床河床(英语:river bed)是指河流底部被水流冲占的部分。枯水期河水占据谷地较小部分,洪水期占据面积最广,甚至整个谷底被水流占据。由河床及其衍生的地貌单元又称为河床地貌。从河
  • 鸟卫一哈勃望远镜/第三代广域照相机S/2015 (136472) 1是柯依伯带矮行星鸟神星已知唯一的卫星,昵称MK 2,尚未正式命名,按照卫星命名习惯推定正式中文名称将为“鸟卫一”。2015年4月,研
  • 杰克·休森约翰·G·休森(英语:John G. Hewson,1924年9月7日-2012年6月26日),美国NBA联盟前职业篮球运动员。
  • 承天巡抚承天巡抚,全称巡抚承天赞理军务,为明朝末年设立的一个巡抚职位。为对应李自成而设。
  • 赤羽一嘉赤羽一嘉(1958年5月7日-)是日本的政治家,公明党党员,现任众议院议员和国土交通大臣兼水循环政策担当大臣。第三次安倍内阁 (模板)第一次改造内阁 - 第二次改造内阁 (2017年11月1日—
  • 乔伊丝·卡萝尔·奥茨乔伊丝·卡萝尔·奥茨(英语:Joyce Carol Oates,1938年6月16日-),美国作家。她成长于纽约郊区的工人阶级家庭,1963发表首部作品,自此之后发表了5部长篇小说。她的小说《他们》获得美
  • 内利耶拉姆内利耶拉姆(Nelliyalam),是印度泰米尔纳德邦The Nilgiris县的一个城镇。总人口42400(2001年)。该地2001年总人口42400人,其中男性21106人,女性21294人;0—6岁人口5594人,其中男2850人
  • 孙师毅孙师毅(1904年-1966年),笔名施谊,男,浙江杭州人,生于江西南昌,中国电影编剧、歌词作家,曾任中国电影家协会理事。
  • 福田晴了福田晴了(1943年8月-)是日本黑道、指定暴力团住吉会二代目会长、住吉一家七代目总长、住吉一家小林会2代目会长。1998年6月,就任住吉会二代目会长(西口茂男后任)。银座的小林会二