匹配滤波器

✍ dations ◷ 2025-08-07 04:23:26 #估计理论,电信理论,信号处理,滤波器理论

在信号处理中,匹配滤波器可以用来解调基频带脉冲信号,基频带脉冲信号意指信号内容为同一波形信号乘上一个常数,在每个周期出现,每个周期中代表着或多或少的信息量。匹配滤波器解调出来的结果其SNR (Signal Noise Ratio)为最大的,匹配滤波器需要事先知道

1.传送的信号

2.信号的同步

才能解调出传送的信号。

此外,匹配滤波器也可用于模式识别 、相似度测试(similarity measure)。

假设g(t):传送信号

w(t):可加性高斯白噪声

x(t) = g(t) + w(t)

h(t):未知波形

y(t):解调结果

1. x ( t ) = g ( t ) + w ( t ) {\displaystyle 1.x(t)=g(t)+w(t)}

2. y ( t ) = h ( t ) {\displaystyle 2.y(t)=\ast h(t)}  

= g ( t ) h ( t ) + w ( t ) h ( t ) {\displaystyle =g(t)\ast h(t)+w(t)\ast h(t)}

= G ( t ) + N ( t ) {\displaystyle =G(t)+N(t)}


3. S N R = | G ( T ) | 2 / E | {\displaystyle 3.SNR=|G(T)|^{2}/E|}

SNR = 信号瞬间功率 / Noise平均功率

信号瞬间功率

| G ( T ) | 2 = H ( f ) G ( f ) e j 2 π f T d f {\displaystyle |G(T)|^{2}=\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}

噪声平均功率

E = N 0 2 | H ( f ) | 2 d f {\displaystyle E={\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}

S N R = H ( f ) G ( f ) e j 2 π f T d f N 0 2 | H ( f ) | 2 d f {\displaystyle SNR={\frac {\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

| H ( f ) | 2 e j 2 π f T d f | G ( f ) e j 2 π f T | 2 d f N 0 2 | H ( f ) | 2 d f {\displaystyle \leq {\frac {\int _{-\infty }^{\infty }|H(f)|^{2}e^{j2\pi fT}\,df\int _{-\infty }^{\infty }|G(f)e^{j2\pi fT}|^{2}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

= 2 N 0 | G ( f ) | 2 d f {\displaystyle ={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

4. 当

H o p t ( f ) = k {\displaystyle H_{opt}(f)=k^{*}} , S N R m a x = 2 N 0 | G ( f ) | 2 d f {\displaystyle SNR_{max}={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

所以

h o p t ( t ) = k G ( f ) e j 2 π f T e j 2 π f t d f {\displaystyle h_{opt}(t)=k\int _{-\infty }^{\infty }G(-f)e^{-j2\pi fT}e^{j2\pi ft}\,df}

= k G ( z ) e j 2 π f ( T t ) d z {\displaystyle =k\int _{-\infty }^{\infty }G(z)e^{-j2\pi f(T-t)}\,dz}

= k g ( T t ) {\displaystyle =kg(T-t)}

(备注)Cauchy-Schwartz inequality:

| A ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|A(x)|^{2}\,dx<\infty } | B ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|B(x)|^{2}\,dx<\infty }

| A ( x ) B ( x ) d x | 2 | A ( x ) | 2 d x | B ( x ) | 2 d x {\displaystyle |\int _{-\infty }^{\infty }A(x)B(x)\,dx|^{2}\leq \int _{-\infty }^{\infty }|A(x)|^{2}\,dx\int _{-\infty }^{\infty }|B(x)|^{2}\,dx}

A = k B {\displaystyle A=kB^{*}} 时,等号成立。

  x = s + v , {\displaystyle \ x=s+v,\,}

  R v = E { v v H } . {\displaystyle \ R_{v}=E\{vv^{\mathrm {H} }\}.\,}


S N R = | y s | 2 E { | y v | 2 } . {\displaystyle \mathrm {SNR} ={\frac {|y_{s}|^{2}}{E\{|y_{v}|^{2}\}}}.}


  | y s | 2 = y s H y s = h H s s H h . {\displaystyle \ |y_{s}|^{2}={y_{s}}^{\mathrm {H} }y_{s}=h^{\mathrm {H} }ss^{\mathrm {H} }h.\,}


  E { | y v | 2 } = E { y v H y v } = E { h H v v H h } = h H R v h . {\displaystyle \ E\{|y_{v}|^{2}\}=E\{{y_{v}}^{\mathrm {H} }y_{v}\}=E\{h^{\mathrm {H} }vv^{\mathrm {H} }h\}=h^{\mathrm {H} }R_{v}h.\,}

S N R = h H s s H h h H R v h . {\displaystyle \mathrm {SNR} ={\frac {h^{\mathrm {H} }ss^{\mathrm {H} }h}{h^{\mathrm {H} }R_{v}h}}.}

如果我们限制分母为1, 最大化 S N R {\displaystyle \mathrm {SNR} } 的问题可以被简化为最大化分子.

于是可以使用 拉格朗乘数

因为 s s H {\displaystyle ss^{\mathrm {H} }} 是一维, 他只有一个非零特征值. 此特征值=

若欲侦测一特定信号 h,我们可以将h时域反向并取共轭,当做滤波器。

一维信号


二维信号


模拟结果:

但由于卷积是线性的,当信号能量大,算出来的值也会跟着变大而有误差,因此我们需要标准化。


标准化公式


一维信号

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} ≠0

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} =0


二维信号

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} ≠0

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} = 0


标准化后的模拟结果:

相关

  • 南美南亚美利加洲(西班牙语:Sudamérica 或 América del Sur;葡萄牙语:América do Sul;法语:Amérique du Sud;英语:South America;荷兰语:Zuid-Amerika;字源:阿美利哥·维斯普西),简称南美
  • 隧道隧道是指在既有的建筑或土石结构中挖出来的通道,供交通立体化、穿山越岭、地下通道、越江、过海、管道运输、电缆地下化、水利工程等使用。隧道不一定全是地下通道,仅位于地面
  • 泰伦提乌斯泰伦提乌斯(拉丁语Publius Terentius Afer,公元前195/185-公元前159/161)是一位罗马共和国时期的剧作家。柏柏尔人后裔。他的喜剧在公元前170–公元前160首次得以演出。泰伦提
  • 金展鹏金展鹏(1938年11月6日-),中国材料科学技术专家。生于广西]荔浦。1960年毕业于中南矿冶学院,1963年中南矿冶学院金属学专业研究生毕业。现为中南大学教授。2003年当选为中国科学院
  • 台语电视台台语电视台是指全程以台湾话(通称台语)发音的电视台。在台湾,具体作为是由公视成立“公视台语台”。在公视台语台开播之前,台湾没有任何一个完全以台语播出的电视台。虽然商业电
  • 颜尼欧·莫利克奈埃尼欧·莫里科内(意大利语:Ennio Morricone,1928年11月10日-),意大利作曲家,生于罗马,曾为超过500部的电影电视写过配乐。2007年他获得奥斯卡终身成就奖,成为第二位获此殊荣的作曲家
  • 无毛猫斯芬克斯猫(Sphynx)又称加拿大无毛猫。这种猫是由于基因突变而产生的品种。体重3.5到7公斤,肌肉发达,毛发稀疏,皮肤皱褶似羚羊皮。头部棱角分明。微呈三角型。眼大呈柠檬状,多数呈
  • 尤斯塔斯二世 (布洛涅)布洛涅伯爵尤斯塔斯二世(法语:Eustache II, comte de Boulogne,约1015 – 约1087),别称小胡子尤斯塔斯(Eustace aux Gernons),自1049年起至1087年逝世时止为布涅洛伯爵。尤斯塔斯在
  • 金官伽倻金官伽倻,传说是朝鲜三国时期由伽倻联盟的首领金首露创建的一个政权。金官伽倻开国君主金首露的家族金海金氏是韩国金氏一分支,来自庆尚南道的金海市。首露王是始祖,金庾信是他
  • 马尾港马尾港是位于福州市马尾区的内河港口,位于闽江在福州分流出的台江、乌龙江会合处,距闽江口26.6公里。马尾港在福州闽江下游,古代从海路进入福州均经过此地。1866年(清同治五年),左