匹配滤波器

✍ dations ◷ 2025-06-18 03:52:18 #估计理论,电信理论,信号处理,滤波器理论

在信号处理中,匹配滤波器可以用来解调基频带脉冲信号,基频带脉冲信号意指信号内容为同一波形信号乘上一个常数,在每个周期出现,每个周期中代表着或多或少的信息量。匹配滤波器解调出来的结果其SNR (Signal Noise Ratio)为最大的,匹配滤波器需要事先知道

1.传送的信号

2.信号的同步

才能解调出传送的信号。

此外,匹配滤波器也可用于模式识别 、相似度测试(similarity measure)。

假设g(t):传送信号

w(t):可加性高斯白噪声

x(t) = g(t) + w(t)

h(t):未知波形

y(t):解调结果

1. x ( t ) = g ( t ) + w ( t ) {\displaystyle 1.x(t)=g(t)+w(t)}

2. y ( t ) = h ( t ) {\displaystyle 2.y(t)=\ast h(t)}  

= g ( t ) h ( t ) + w ( t ) h ( t ) {\displaystyle =g(t)\ast h(t)+w(t)\ast h(t)}

= G ( t ) + N ( t ) {\displaystyle =G(t)+N(t)}


3. S N R = | G ( T ) | 2 / E | {\displaystyle 3.SNR=|G(T)|^{2}/E|}

SNR = 信号瞬间功率 / Noise平均功率

信号瞬间功率

| G ( T ) | 2 = H ( f ) G ( f ) e j 2 π f T d f {\displaystyle |G(T)|^{2}=\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}

噪声平均功率

E = N 0 2 | H ( f ) | 2 d f {\displaystyle E={\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}

S N R = H ( f ) G ( f ) e j 2 π f T d f N 0 2 | H ( f ) | 2 d f {\displaystyle SNR={\frac {\int _{-\infty }^{\infty }H(f)G(f)e^{j2\pi fT}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

| H ( f ) | 2 e j 2 π f T d f | G ( f ) e j 2 π f T | 2 d f N 0 2 | H ( f ) | 2 d f {\displaystyle \leq {\frac {\int _{-\infty }^{\infty }|H(f)|^{2}e^{j2\pi fT}\,df\int _{-\infty }^{\infty }|G(f)e^{j2\pi fT}|^{2}\,df}{{\frac {N_{0}}{2}}\int _{-\infty }^{\infty }|H(f)|^{2}\,df}}}

= 2 N 0 | G ( f ) | 2 d f {\displaystyle ={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

4. 当

H o p t ( f ) = k {\displaystyle H_{opt}(f)=k^{*}} , S N R m a x = 2 N 0 | G ( f ) | 2 d f {\displaystyle SNR_{max}={\frac {2}{N_{0}}}\int _{-\infty }^{\infty }|G(f)|^{2}\,df}

所以

h o p t ( t ) = k G ( f ) e j 2 π f T e j 2 π f t d f {\displaystyle h_{opt}(t)=k\int _{-\infty }^{\infty }G(-f)e^{-j2\pi fT}e^{j2\pi ft}\,df}

= k G ( z ) e j 2 π f ( T t ) d z {\displaystyle =k\int _{-\infty }^{\infty }G(z)e^{-j2\pi f(T-t)}\,dz}

= k g ( T t ) {\displaystyle =kg(T-t)}

(备注)Cauchy-Schwartz inequality:

| A ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|A(x)|^{2}\,dx<\infty } | B ( x ) | 2 d x < {\displaystyle \int _{-\infty }^{\infty }|B(x)|^{2}\,dx<\infty }

| A ( x ) B ( x ) d x | 2 | A ( x ) | 2 d x | B ( x ) | 2 d x {\displaystyle |\int _{-\infty }^{\infty }A(x)B(x)\,dx|^{2}\leq \int _{-\infty }^{\infty }|A(x)|^{2}\,dx\int _{-\infty }^{\infty }|B(x)|^{2}\,dx}

A = k B {\displaystyle A=kB^{*}} 时,等号成立。

  x = s + v , {\displaystyle \ x=s+v,\,}

  R v = E { v v H } . {\displaystyle \ R_{v}=E\{vv^{\mathrm {H} }\}.\,}


S N R = | y s | 2 E { | y v | 2 } . {\displaystyle \mathrm {SNR} ={\frac {|y_{s}|^{2}}{E\{|y_{v}|^{2}\}}}.}


  | y s | 2 = y s H y s = h H s s H h . {\displaystyle \ |y_{s}|^{2}={y_{s}}^{\mathrm {H} }y_{s}=h^{\mathrm {H} }ss^{\mathrm {H} }h.\,}


  E { | y v | 2 } = E { y v H y v } = E { h H v v H h } = h H R v h . {\displaystyle \ E\{|y_{v}|^{2}\}=E\{{y_{v}}^{\mathrm {H} }y_{v}\}=E\{h^{\mathrm {H} }vv^{\mathrm {H} }h\}=h^{\mathrm {H} }R_{v}h.\,}

S N R = h H s s H h h H R v h . {\displaystyle \mathrm {SNR} ={\frac {h^{\mathrm {H} }ss^{\mathrm {H} }h}{h^{\mathrm {H} }R_{v}h}}.}

如果我们限制分母为1, 最大化 S N R {\displaystyle \mathrm {SNR} } 的问题可以被简化为最大化分子.

于是可以使用 拉格朗乘数

因为 s s H {\displaystyle ss^{\mathrm {H} }} 是一维, 他只有一个非零特征值. 此特征值=

若欲侦测一特定信号 h,我们可以将h时域反向并取共轭,当做滤波器。

一维信号


二维信号


模拟结果:

但由于卷积是线性的,当信号能量大,算出来的值也会跟着变大而有误差,因此我们需要标准化。


标准化公式


一维信号

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} ≠0

s = n + τ 1 n + τ 2 | x | 2 {\displaystyle \sum _{s=n+\tau _{1}}^{n+\tau _{2}}|x|^{2}} =0


二维信号

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} ≠0

s = m + τ 1 m + τ 2 v = n + ρ 1 n + ρ 2 | x | 2 {\displaystyle \sum _{s=m+\tau _{1}}^{m+\tau _{2}}\sum _{v=n+\rho _{1}}^{n+\rho _{2}}|x|^{2}} = 0


标准化后的模拟结果:

相关

  • 法雷人法雷人(英语:Fore),是生活在巴布亚新几内亚东高地省奥卡普区的巴布亚人,人口约20000人。1950年代的神经系统疾病库鲁病(哈哈病)在南方法雷人之中发现,在1957年至1960年,约1000人因此
  • 各国监禁率列表各国监禁率列表的数据主要来源于伦敦国王学院法学院国际监狱研究中心的世界监狱简报,此列表由高到低排列。
  • 博瓦尔峰坐标:46°25′03″N 9°54′09″E / 46.4174°N 9.90245°E / 46.4174; 9.90245博瓦尔峰(Piz Boval),是瑞士的山峰,位于该国东部,由格劳宾登州负责管辖,属于贝尔尼纳山脉的一部分,海
  • 董万瑞董万瑞(1941年3月-2017年2月9日),山西省翼城县中卫乡董家坡人,中国人民解放军中将。早年参加中国人民解放军。曾任步兵某师师长。1993年任陆军第三十一集团军军长。1996年任南京
  • 裂解汽油裂解汽油(英语:pyrolysis gasoline;简称Pygas)是富含芳香烃的轻油级产品。裂解汽油是高温轻油裂解生产乙烯和丙烯时的副产品。此外,裂解汽油是含有五碳至十二碳范围之芳香烃、烯
  • 谷木科谷木科(学名:)共有7属约430余种,主要分布在全球热带地区,其中以东南亚、太平洋岛屿种类最多。中国2属约12种,分布于西南部至东南部。本科植物都是灌木或小乔木,叶对生,革质,卵形或披
  • 汉娜 (电影)《汉娜》(英语:)是一部于2017年上映的意大利剧情片。该片由安迪亚·帕劳洛(英语:Andrea Pallaoro)执导。它第74届威尼斯电影节以主竞赛单元放映。在电影节上,夏洛特·兰普林赢得威
  • 雷斯·约斯特 雷斯·约斯特(德语:Res Jost,1918年1月10日-1990年10月3日),瑞士理论物理学家,主要研究方向为构造量子场论。
  • 特迪·科勒克特迪·科勒克(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Ta
  • 拉娜·康多拉娜·特蕾莎·康多(英语:Lana Therese Condor,1997年5月11日-),本名陈彤兰(越南语:Trần Đồng Lan),美国籍越南裔演员、舞者。2016年凭借在超级英雄电影《X战警:天启》中饰演李千欢