可观测性

✍ dations ◷ 2025-04-25 22:30:19 #自2011-10月需要澄清文字的条目,控制理论

控制理论中的可观察性(observability)是指系统可以由其外部输出推断其其内部状态的程度。系统的可观察性和可控制性是数学上对偶的概念。可观察性最早是匈牙利裔工程师鲁道夫·卡尔曼针对线性动态系统提出的概念。若以信号流图来看,若所有的内部状态都可以输出到输出信号,此系统即有可观察性。

若以正式的定义来看,一系统具有可观察性当且仅当,针对所有的状态向量及控制向量,都可以在有限时间内,只根据输出信号来识别目前的状态(此定义比较接近状态空间的表示方式)。比较不正式的说法,就表示可以根据系统输出来判断整个系统的行为。若系统不可观察,表示其中部分状态的值无法透过输出信号来判定。这也表示控制器无法知道这个状态的值(此时就要透过其他的估测技术才能知道其状态)。

在用状态空间表示的线性时不变系统中,有一个简单的方式来确认系统是否可观测。考虑一个有 n {\displaystyle n} 个状态的单一输入单一输出系统,若以下可观测性矩阵(observability matrix)中的行秩

等于 n {\displaystyle n} ,则此系统为可观测系统。此一测试的原理是若 n {\displaystyle n} 个行是线性独立的,则 n {\displaystyle n} 个状态可以透过输出变数 y ( k ) {\displaystyle y(k)} 的线性组合来得知。

有些系统会利用对输出的量测来估计系统的状态,这类功能的模组称为状态观测器(state observer)或简称为观测器(observer)。

线性时不变系统的可观测性指数(Observability index) v {\displaystyle v} 是满足 rank ( O v ) = rank ( O v + 1 ) {\displaystyle {\text{rank}}{({\mathcal {O}}_{v})}={\text{rank}}{({\mathcal {O}}_{v+1})}} 的最小自然数,其中

线性系统(A,,C)不可观测子空间N是线性映射G的核

其中 C ( t 0 , t 1 ; R n ) {\displaystyle {\mathcal {C}}(t_{0},t_{1};R^{n})} 是连续函数 f : R n {\displaystyle f:\to R^{n}} 的集合,且 Φ ( t 0 , t 1 ) {\displaystyle \Phi (t_{0},t_{1})} 是和A相关的状态传递矩阵。


若(A,,C)是自主系统(autonomous system),N可以改写为

例子:考虑以下的A和C:

若可观测性矩阵定义为 O := ( C T | A T C T ) T {\displaystyle {\mathcal {O}}:=(C^{T}|A^{T}C^{T})^{T}} ,可以计算如下:

因此可以计算可观测性矩阵的核。

O v = 0 {\displaystyle {\mathcal {O}}v=0}

K e r ( O ) = N = s p a n { } {\displaystyle Ker({\mathcal {O}})=N=span\{{\begin{bmatrix}1\\0\end{bmatrix}}\}}

若Rank( O {\displaystyle {\mathcal {O}}} )=n,n为可观测性矩阵中独立行的个数,表示系统可观测。在此例中det( O {\displaystyle {\mathcal {O}}} )=0,因此Rank( O {\displaystyle {\mathcal {O}}} )<n,此系统不可观测。

因为不可观测子空间为 R n {\displaystyle R^{n}} 的子空间,因此以下的性质成立:

可侦测性(detectability)是比可观测性略弱一些的条件。若系统内所有不可侦测的状态都是稳定的,此系统即具有可侦测性。

考虑连续时间下的线性时变系统

t ; {\displaystyle t\in ;} 的时间内, A , B {\displaystyle A,B} C {\displaystyle C} 矩阵都已知,而输入及输出 u {\displaystyle u} y {\displaystyle y} 也都已知,可以透过一个额外在 M ( t 0 , t 1 ) {\displaystyle M(t_{0},t_{1})} 核之内的向量来确认 x ( t 0 ) {\displaystyle x(t_{0})} M ( t 0 , t 1 ) {\displaystyle M(t_{0},t_{1})} 定义如下

其中 ϕ {\displaystyle \phi } 为状态转换矩阵。

M ( t 0 , t 1 ) {\displaystyle M(t_{0},t_{1})} 为非奇异方阵,可以找到一个唯一的 x ( t 0 ) {\displaystyle x(t_{0})} 。而且若 x 1 x 2 {\displaystyle x_{1}-x_{2}} 是在 M ( t 0 , t 1 ) {\displaystyle M(t_{0},t_{1})} 的核内,不可能由 x 2 {\displaystyle x_{2}} 找到对应的启始状态 x 1 {\displaystyle x_{1}}

上述定义的 M {\displaystyle M} 有以下的特性:

系统在可观测,当且仅当在存在区间 \in R {\displaystyle \mathbb {R} } ,使得矩阵 M ( t 0 , t 1 ) {\displaystyle M(t_{0},t_{1})} 为非奇异方阵。

A ( t ) , C ( t ) {\displaystyle A(t),C(t)} 可解析,则系统在可观测的条件是存在 t ¯ {\displaystyle {\bar {t}}\in } 以及正数k使得

其中 N 0 ( t ) := C ( t ) {\displaystyle N_{0}(t):=C(t)} ,而 N i ( t ) {\displaystyle N_{i}(t)} 可用以下方式递回定义

考虑一个在 ( , ) {\displaystyle (-\infty ,\infty )} 内解析的时变系统,矩阵为

A ( t ) = {\displaystyle A(t)={\begin{bmatrix}t&1&0\\0&t^{3}&0\\0&0&t^{2}\end{bmatrix}}} , C ( t ) = . {\displaystyle C(t)={\begin{bmatrix}1&0&1\end{bmatrix}}.} = {\displaystyle {\begin{bmatrix}N_{0}(0)\\N_{1}(0)\\N_{2}(0)\end{bmatrix}}={\begin{bmatrix}1&0&1\\0&-1&0\\1&0&0\end{bmatrix}}} ,因为矩阵的秩为3,因此在 R {\displaystyle \mathbb {R} } 内所有非平凡区间内都是可控制的。

假设系统 x ˙ = f ( x ) + j = 1 m g j ( x ) u j {\displaystyle {\dot {x}}=f(x)+\sum _{j=1}^{m}g_{j}(x)u_{j}} , y i = h i ( x ) , i p {\displaystyle y_{i}=h_{i}(x),i\in p} ,其中 x R n {\displaystyle x\in \mathbb {R} ^{n}} 为状态向量, u R m {\displaystyle u\in \mathbb {R} ^{m}} 为输入向量,而 y R p {\displaystyle y\in \mathbb {R} ^{p}} 为输出向量。 f , g , h {\displaystyle f,g,h} 都是光滑的向量场。

定义可观测空间 O s {\displaystyle {\mathcal {O}}_{s}} 为包括所有李导数及多重李导数的空间。此空间在 x 0 {\displaystyle x_{0}} 可观测当且仅当 dim ( d O s ( x 0 ) ) = n {\displaystyle {\textrm {dim}}(d{\mathcal {O}}_{s}(x_{0}))=n}

d O s ( x 0 ) = s p a n ( d h 1 ( x 0 ) , , d h p ( x 0 ) , d L v i L v i 1 , , L v 1 h j ( x 0 ) ) ,   j p , k = 1 , 2 , . {\displaystyle d{\mathcal {O}}_{s}(x_{0})=\mathrm {span} (dh_{1}(x_{0}),\ldots ,dh_{p}(x_{0}),dL_{v_{i}}L_{v_{i-1}},\ldots ,L_{v_{1}}h_{j}(x_{0})),\ j\in p,k=1,2,\ldots .}

Griffith及Kumar,、Kou、Elliot及Tarn及Singh是早期发展非线性动态系统的可观测性准则的先驱。

可观测性也可以用来描述稳态系统(一般会用代数方程及不等式来定义),甚至是 R n {\displaystyle \mathbb {R} ^{n}} 内的集合。就像可观测性准则可以预测动态系统中卡尔曼滤波或其他观测器的行为一様, R n {\displaystyle \mathbb {R} ^{n}} 内集合的可观测性准则也可以预测data reconciliation(英语:data validation and reconciliation)及其他静态观测器的行为。在非线性的例子中,可以针对个别变数或区部特性来判断可观测性,不需针对全域特性来判断。

相关

  • 齿龈边音齿龈边音(alveolar lateral approximant、dental, alveolar and postalveolar lateral approximants)是辅音的一种,用于一些口语中。齿龈边音、齿边音、和齿龈后边音在国际音标
  • 细胞粘附分子细胞黏附分子(英语:Cell adhesion molecules,缩写:CAMs)是位于细胞表面上的蛋白,参与了与其他细胞或细胞外基质(ECM)中的称为细胞黏附(英语:Cell adhesion)的结合(英语:Molecular binding
  • 化妆化妆是美容的手段之一,可以使人更有自信或者看起来更具有亲和力。化妆广泛存在于人类社会和文化当中,几乎是普世文化通则的一部分。一般来说,人们会根据工作需要和场合作相应的
  • 吉伦特省吉伦特省(法语:Gironde),又称纪龙德省,是法国新阿基坦大区所辖的省份,滨大西洋,以吉伦特河口命名。该省编号为33。法国大革命时期的吉伦特派即以此地命名。5个海外省及大区
  • 斯特拉斯堡国家和大学图书馆斯特拉斯堡国家和大学图书馆(法语:Bibliothèque nationale et universitaire,简称:BNU),是法国斯特拉斯堡的一座公共图书馆,位于共和国广场(从前的皇帝广场),面对莱茵宫。在斯特拉斯
  • 微量营养素缺乏病微量营养素缺乏病(英语:Micronutrient deficiency)是指植物或动物缺乏足够的一种或多种微量营养素,因而无法维持最佳健康。人类和其他动物中,此病可分为两类,包括维生素缺乏症和矿
  • 埃塞俄比亚高原埃塞俄比亚高原(又译埃塞俄比亚高地)是非洲国家埃塞俄比亚、厄立特里亚和索马里的一个高原,由一群坚固且大规模的山构成,在非洲之角的索马里北部及埃塞俄比亚。它有时也被称为“
  • 紫绀型先天性心脏病青紫婴儿(blue baby),或称为发绀婴儿、蓝婴,是指婴儿因先天性心脏缺损或后天性缺氧,血含氧量较正常人低,造成发绀现象。因患儿身体呈蓝紫色而得名。青紫型先天性心脏病包括:Templat
  • 查克·舒默查尔斯·埃利斯·“查克”·舒默(英语:Charles Ellis "Chuck" Schumer(/ˈʃuːmər/);1950年11月23日-),是美国政治人物,纽约州的资深联邦参议员,隶属于民主党。现任参议院少数党领袖
  • 杰里科耶利哥或耶律哥(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","