对称多项式

✍ dations ◷ 2025-10-26 00:10:14 #数学公式,多项式,对称

数学中的对称多项式是一种特殊的多元多项式。假设一个元多项式(1, 2, ..., ),当其中的个不定元任意交换后,多项式仍维持不变,就称其为对称多项式。严格的说法是,如果对任意的元置换,都有((1), (2), ..., ()) = (1, 2, ..., ),就说是对称多项式。

对称多项式最早是在出现在对一元多项式方程求根的研究中。一元多项式方程的系数可以用它的根的多项式来表达。而多项式的任何一个根的地位理当与余者都相同,所以这类多项式中,不定元进行置换不应当改变多项式。从这个角度来说,将多项式方程的根构成的系数多项式称为基本对称多项式是合理的。有定理说明,任意的对称多项式都可以表达为基本对称多项式的多项式。

以下是两个变数的对称多项式的例子:

以下是三个变数的对称多项式的例子:

并不是所有多项式都是对称的,例如 P ( X 1 , X 2 ) = X 1 2 X 2 {\displaystyle P(X_{1},X_{2})=X_{1}-2X_{2}} (1, …, ) 也可以用前 n 个对称多项式表示,例如

与单项对称多项式以及完全齐次对称多项式不同的是,一个 系数的对称多项式可能无法被表示成 n 个变数的 系数多项式,其中各变数代入次方和多项式 p1(X1, …, Xn), …, pn(X1, …, Xn)。例如对 n = 2,对称多项式

只能被表达成

然而,如果有 3 个变数的话,情况又变得不同

如果将上式的 X3 代入 0,也可以得到一个 2 个变数情况的表示式,然而该表示式中包含多项式 p3,因此不适用于 2 变数的叙述条件。从上述例子可以看出,不同的变数个数可能会影响到同一个单项对称多项式是否能被次方和对称多项式以整系数的代数组合表达。然而,对于 n ≥ 2,基本对称多项式 en 都不能表达成次方和对称多项式的整系数代数组合表达(注意到 n = 1 时 e1 = p1)。借由牛顿恒等式可以很容易推得上述结论,并且会有其中若干个系数的分母是 n。因为这个缘故,前述的结论只在任何包含有理数的环中成立,在有限特征的环中不成立。

以下用a表示对称多项式,s表示等幂和:

r = 1 n ( x x r ) = r = 0 n a r x r = 0 , s m = r = 1 n x r m {\displaystyle \prod _{r=1}^{n}(x-x_{r})=\sum _{r=0}^{n}a_{r}x^{r}=0,s_{m}=\sum _{r=1}^{n}x_{r}^{m}}

s m + a 1 s m 1 + a 2 s m 2 + . . . + a m 1 s 1 + m a m = 0 {\displaystyle s_{m}+a_{1}s_{m-1}+a_{2}s_{m-2}+...+a_{m-1}s_{1}+ma_{m}=0}

证明如下:

( i = 1 n k i x i r ) i 1 i 2 . . . i s r x i 1 x i 2 . . . x i s r = i 1 i 2 . . . i s r k i 1 x i 1 r + 1 x i 2 . . . x i s r + i 1 i 2 . . . i s r k i 1 x i 1 r x i 2 . . . x i s r + 1 {\displaystyle \displaystyle (\sum _{i=1}^{n}k_{i}x_{i}^{r})\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}=\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r+1}x_{i_{2}}...x_{i_{s-r}}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r}x_{i_{2}}...x_{i_{s-r+1}}}

i 1 i 2 . . . i s 1 k i 1 x i 1 2 x i 2 . . . x i s 1 + i 1 i 2 . . . i s k i 1 x i 1 1 x i 2 . . . x i s i 1 i 2 . . . i s 2 k i 1 x i 1 3 x i 2 . . . x i s 2 i 1 i 2 . . . i s 1 k i 1 x i 1 2 x i 2 . . . x i s 1 + . . . {\displaystyle \displaystyle \sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}-\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-2}}k_{i_{1}}x_{i_{1}}^{3}x_{i_{2}}...x_{i_{s-2}}-\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+...}

( 1 ) s 1 i 1 k i 1 x i 1 s + i 1 i 2 . . . i s k i 1 x i 1 1 x i 2 . . . x i s = r = 1 s 1 ( 1 ) r ( i = 1 n k i x i r ) i 1 i 2 . . . i s r x i 1 x i 2 . . . x i s r {\displaystyle \displaystyle (-1)^{s-1}\sum _{i_{1}}k_{i_{1}}x_{i_{1}}^{s}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}=\sum _{r=1}^{s-1}(-1)^{r}(\sum _{i=1}^{n}k_{i}x_{i}^{r})\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}}

两项时使等幂和分解为积与和的组合,如 x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 2 x 1 x 2 {\displaystyle x_{1}^{2}+x_{2}^{2}=(x_{1}+x_{2})^{2}-2x_{1}x_{2}}

用数学归纳法可证明高维的形式:

m = n = 3 {\displaystyle m=n=3}

也可以把对称多项式表达成等幂和:

m = n = 3 {\displaystyle m=n=3}

相关

  • 遂宁市遂宁市(四川话拼音:Xu4lin2;国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Genti
  • 秋千秋千 (闽南语、广东话称千秋)是靠一人或多人在游戏者的背后,推动游戏者,或自己利用绳索的前后摆荡,让游戏者的身体随秋千上下起落的一种游戏。通常两条绳索末端系一块木板、轮胎
  • 设计史设计史是对设计的历史的研究。“设计”这个概念可以从两个方面来理解。一是从纯粹观念的角度,认为设计是一种改造客观世界的构思和想法,二是从学科发展演变的角度出发,认为设计
  • 新娘一般来说,新娘一词专指对于确立婚姻关系的男女在结婚仪式中的女方的称呼,男方则称新郎。新郎、新娘进门后,有撤谷豆、抱毡等习俗,接着要“拜堂”。古代婚礼时,新娘头上都会蒙着一
  • 依半衰期排列的放射性同位素列表这是依半衰期排列的放射性同位素列表,次序由最短至最长。
  • 金刚《金刚》(英语:King Kong)是一部1933年的黑白怪兽电影。本片由雷电华影业公司制作发行,梅里安·C·库珀(Merian C. Cooper)和欧内斯特·B·舍德萨克(Ernest B. Schoedsack)执导,菲伊
  • 粉红豹顽皮豹(英语:Pink Panther)又称粉红豹或傻豹,动画角色,1960~1970年代间曾推出多部电视动画作品。起初只是在1963年的真人电影《乌龙帮办》片头中登场,想不到大受好评。无心插柳的
  • ε-变形菌详见细菌分类表ε-变形菌是变形菌中的一类,与δ-变形菌关系最近。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 黎清芳黎清芳(越南语:Lê Thanh Phương,1970年-)是越南奥黛服装设计师。1970年出生在槟椥省,毕业于胡志明市美术大学绘画系。在越南Collection Grand Prix比赛上获最具印象奖。1999年1
  • 范镇 (文学家)范镇(1009年-1089年1月15日),字景仁,华阳(今四川成都)人,北宋文学家、史学家。四岁既孤,从二兄范镃、范锴为学,又尝受学于乡先生庞直温,由范镃推荐跟随薛奎入京。薛奎预言范镇:“当以文