广义相对论中的开普勒问题

✍ dations ◷ 2025-04-04 06:44:30 #广义相对论

广义相对论中的开普勒问题,是指在广义相对论的框架下求解存在引力相互作用的两体动力学问题。在典型情况下以及本文中,其中一个物体的质量 m {\displaystyle m} 2 < 2 4的前提下, φ 0 {\displaystyle \varphi _{0}} 2 = 23 = −1的特殊情形,即方程 G ( ζ ) {\displaystyle G(\zeta )} = 2 = 4,这个解对应着经典的圆轨道,即上面得到的半径为 r o u t e r {\displaystyle r_{outer}} 2 ≤ −1/12 ≤ ζ ≤ 3

当-3 = 22 = 21 ζ {\displaystyle \zeta } 3是负值。将重根代换为 e = n 2 / 3 {\displaystyle e=n^{2}/3} 2趋于1的极限下,模数趋于1,而 w {\displaystyle w} 1,这使得轨道方程

对于所有大于1 ζ {\displaystyle \zeta } 值都是正的,并且 ζ {\displaystyle \zeta } 可以无限制增长,这对应着粒子轨道逐渐向 r = 0 {\displaystyle r=0} 处衰减。

根据广义相对论,两个互相绕转的质量例如双星系统会发出引力辐射,由引力辐射携带的能量会让它们的轨道稍微偏离测地线方程所得到的结果。关于这一问题的最著名间接验证是由拉塞尔·赫尔斯和约瑟夫·泰勒对一个脉冲双星PSR B1913+16的观测,两人因此获得1993年的诺贝尔物理学奖。系统内的两颗中子星距离非常接近,且绕转速度非常之快,测量到的一个周期时长大约仅为465分钟。两颗中子星的轨道是高度椭圆的,偏心率达到0.62。按照广义相对论的预言,这样短的轨道周期和高度的偏心轨道使得这个双星系统成为一个非常好的引力波源,通过引力辐射损失的能量使轨道逐渐衰减,轨道周期逐渐变短。通过长达三十年的实验观测,即使是在可以达到的最精确的测量下轨道周期的降低和广义相对论的预言仍符合得相当好。广义相对论还预言,再过三亿年后这两颗恒星最终会碰撞到一起。

开普勒问题中因引力辐射导致的能量和角动量的损耗公式已经通过计算得到,在一个完整的轨道周期内取平均下的能量变化率为:356-357

这里e是椭圆轨道的偏心率,a是半长轴。方程左边的角括号表示是在一个轨道周期内取平均值。类似的,角动量的平均变化率为

周期减少率 P b {\displaystyle P_{b}}

轨道的偏心率越接近于1,即椭圆轨道形状越瘦长时,能量和角动量的损耗就越快;而半长轴越短轨道的衰减也越快

开普勒运动的轨道方程也可以通过哈密顿-雅可比方程推导出。这种方法的好处是它可以将一个粒子的运动等价于一束波的传播,这就很容易进而通过费马原理推导出光线在引力场中的偏折公式。这种方法的解释是,由于引力场的延时效应,一束波的波前靠近中心质量 m {\displaystyle m} 的部分要比远离中心质量的部分运动得慢,这就导致了波前传播方向的改变。

使用一般的协变性,一个粒子在任意坐标下的哈密顿-雅可比方程可以表示为:649,1188:328-330

特别地,在史瓦西度规下

这里我们仍然选取了轨道平面位于 θ = π / 2 {\displaystyle \theta =\pi /2} 的球坐标系。假设哈密顿主函数 S {\displaystyle S} 是可分离变量的,则其应具有如下形式:

这里 E {\displaystyle E} L {\displaystyle L} 分别是粒子的能量和角动量。从哈密顿-雅可比方程可以得到哈密顿主函数径向分量 S r ( r ) {\displaystyle S_{r}(r)} 的积分解:

对这个主函数求偏导数:

将满足上面得到的轨道方程

这种方法也可以精致地推导出轨道的进动率。

在质量趋于零(或 a {\displaystyle a} 趋于无穷大)时,哈密顿主函数简化作下面的形式:

从这个公式可以导出光线在引力场中的偏振公式。

在广义相对论中,无质量粒子在时空中的运动轨迹是测地线,这是等效原理的要求。从最小作用量原理的观点来看,测地线长度的变分为零,即::263-264

这里 τ {\displaystyle \tau } 是固有时, s = c τ {\displaystyle s=c\tau } 是测地线在时空中的弧长。 T {\displaystyle T} 在这里的定义是

其物理意义类似于经典力学中的动能。如果将时空坐标的四维分量对固有时的导数写成

T {\displaystyle T} 可以写成:708-709

常数因数的引入对变分问题的结果不会造成影响,因此在积分内取变分仍满足哈密顿原理:

从拉格朗日方程可以得到变分问题的解

对变量 t {\displaystyle t} φ {\displaystyle \varphi } 应用,可得到两个守恒量:

进一步可写成 L {\displaystyle L} E {\displaystyle E} 的方程:

这也是上面看到的从史瓦西度规直接得到的结果。

只受到引力作用的粒子的作用量为:313ff

其中 q {\displaystyle q} 是任意能够将粒子的世界线可微化的参数,对这个作用量使用变分法就可以得到测地线方程。不过如果我们对被积函数的平方求变分过程会更简单,根据度规这个平方的形式为

取变分

如果我们只对 φ {\displaystyle \varphi } 取变分可得

两边除以 2 c d τ d q {\displaystyle 2c{\frac {d\tau }{dq}}} 就得到了被积函数的变分:

代入哈密顿原理的方程

通过分部积分法

在端点处纬度的变分为零,因此等式右边第一项为零;对于第二项,由于 δ φ {\displaystyle \delta \varphi } 可以任意取值,只有当被积函数的另一部分处处为零时才能保证等式右边为零,因此得到运动方程:

如果我们只对 t {\displaystyle t} 取变分可得

类似地,两边除以 2 c d τ d q {\displaystyle 2c{\frac {d\tau }{dq}}} 得到被积函数的变分:

根据哈密顿原理

分部积分

得到运动方程

对这两个方程积分并指定积分常数就可以得到上面关于守恒量的方程

对于能量和角动量是常数的系统,这两个方程可以合并为一个并且对光子这样的无质量粒子同样成立,此时沿着所描述的测地线的固有时总为零。

相关

  • 陈孝平陈孝平(1953年6月-),安徽阜南人,肝胆外科领域专家。1973年毕业于蚌埠医学院,1982年、1985年各取得同济医科大学医学硕士、博士学位。担任华中科技大学同济医学院附属同济医院外科
  • 拉伸强度极限抗拉强度是在外力作用下,材料抵抗破坏的能力,也可翻译为极限拉伸强度,简称强度。根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度(英语:Flexural strength)、抗剪强度
  • 1st黄体制剂(英语:Progestin)是一种合成的孕激素,与孕酮有类似效果。Progestin的两种最重要用途为激素避孕(英语:Hormonal contraception)(独立或与雌激素一同使用)以及作为激素替代疗法
  • 推理推理是“使用理智从某些前提产生结论”的行动。以下三种推理是属于哲学、逻辑、心理学和人工智能等学门所感兴趣的领域。逻辑推理有三种主要的方式:演绎推理(deductive reason
  • 脑内回馈系统犒赏系统(英语:reward system)是一组神经结构,旨在维护动机显著性(英语:incentive salience)(也就是动机、需求、喜好等)、联想学习(主要依靠增强和古典制约)和正面情感(英语:Positive af
  • 难府难府(泰语:จังหวัดน่าน,皇家转写:Changwat Nan,泰语发音:),一译楠府,是泰国北部的一个府。邻近府分别为(由南方起顺时针方向)程逸府、帕府和帕尧府。东北方则与老挝赛宋奔省
  • 天皇制国家主义日本法西斯主义,是指日本在第二次世界大战前军事独裁主义的意识形态及政治体制。学术界对于日本在此时期是否属于法西斯主义看法两极,并无共识。二战前多数西方学者与二战后多
  • 刘 华刘华可以指:
  • 自由意志论自由意志主义(Libertarianism),又被译为新古典自由主义、自由人主义、放任自由主义、自由意志论、自由至上主义、自由至上论。自由意志主义是一种主张个人应该享有绝对的自由以
  • 曹晚植曹晚植(1883年2月1日-1950年10月15日),号古堂(고당),韩国独立运动家,在韩国被誉为“朝鲜的甘地”。生于平安南道江西郡。曹晚植早年进入平壤的基督教学校崇实中学学习并信奉基督教。