数理生物学

✍ dations ◷ 2025-07-12 17:57:22 #生物数学

数理生物学(英语:mathematical and theoretical biology),又称数学生物学(英语:mathematical biology)或生物数学(英语:biomathematics)是一个跨学科的领域,其主要目标是利用数学的技巧和工具为自然界,特别是生物学中的过程建模并进行分析。生物数学在生物学的理论和实践中都有广泛的应用。

很久以前,数学即被应用于生物学的研究中。然而直到最近,这一领域才引起人们足够的重视,其原因包括:

下面是一些生物数学界的热门研究领域。这些项目所研究对象的共同特点是极其复杂并具有非线性的动力特征。一种观点认为,此类多种因素交互的问题只能通过数学或计算机模拟的方式来理解。由于此类研究涉及多个学科,时常是由数学家、物理学家、生物学家、医生、动物学家和化学家等共同完成的。

传统上,演化生物学和生态学都大量使用数学理论。数学模型在演化及生态学有许多不用的功能,包括用统计学分析资料、预测生物现象、以及检验假说的正确性。

在微演化中,最主要的数学应用是族群遗传学,计算的是有限数量的基因频率如何受天择、性择、突变、漂变、迁徒等演化力量影响;可以由观察到的基因频率回推演化力量,或是由演化力量预测未来的基因频率。当有大量基因座,而且个基因座对性状的影响都很小时,可以用计量遗传学(Quantitative genetics)描述性状的分布如何演化;通常假设性状是正态分布,计算基平均值和方差,罗纳德·费雪为统计学打下的基础即是由此建立。由John Maynard Smith引进的进化博弈理论是另一个重要的数理应用。

在巨演化中,系统分类学大量使用数学。该领域比较生物间性状的异同(包括基因组成)后,用最大简约法或最大似然估计等数学理论来重建演化历史。

在生态学中,族群动态学(Population dynamics)描述生物族群大小的变化。马尔萨斯的《人口论》提出指数成长的人口模型,可以说是最早的族群动态学理论。Lottak-Volterra方程解释天敌和猎物的族群波动关系,也早在19世纪就被广泛地研究。与人口动力学密切相关的另一领域是数学流行病学,其主要研究内容为传染病在易感人群中的传播。目前已经有多个病毒传播模型在公共健康政策的决策中产生了重要影响。群集生态学以及生物地理学也大量使用数学,包括罗伯特·麦克阿瑟和艾德华·威尔森提出的的岛屿模型,以及生态学中性理论,计算环境因子影响如何影响物种迁徒、灭绝、以及种化的频率,从而解释一个地区的物种多样性。

由于分子生物学的发展,近年来该领域的研究硕果累累。

一般来说,在生物数学中,一个生物学的模型往往被抽象转化成为一个方程或方程组。在不严格的意义下,往往将“模型”和“方程组”视为同一含义。该方程或方程组的解,可以描述一个生物系统随时间的演进或在平衡点附近的性态。

生物数学中有多种类型的方程和性态,它们一般与模型或方程是独立的。在建模的过程中,往往进行一些假设,从而使得问题更容易用抽象语言描述。

下面是一些常用的数学工具和假设:

动力系统用来描述一个从给定的初态到某个终态的映射。由给定的初态出发,随着时间的变化,一个动力系统始终产生相同的轨线,并且不同的轨线彼此不相交。

随即动力系统用来描述一个从给定的初态到某个终态随机的映射,将相空间视为一个随机变量及相应的随机分布。

这方面的经典工作可以参考艾伦·图灵1952年发表于《器官学》()的文章〈器官学的化学基础〉。

相关

  • 阿塞拜疆阿塞拜疆共和国(阿塞拜疆语:Azərbaycan Respublikası),通称阿塞拜疆(阿塞拜疆语:Azərbaycan,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libert
  • 保罗·阿利维萨托斯阿曼德·保罗·阿利维萨托斯(英语:Armand Paul Alivisatos,1959年11月12日-),芝加哥人,希腊裔美国科学家,研究纳米晶体的结构、热力学、光学、电学性能。2004年当选美国文理科学院院
  • 约翰·康斯特勃约翰·康斯特勃(John Constable,1776年6月11日-1837年3月31日),英国风景画家。康斯特勃出生于泰晤士河河口北面的萨福克郡,父亲是一位磨房主。他的一生非常平淡,他一直在家乡作画,从
  • 鲍里斯·巴顿鲍里斯·叶夫根诺维奇·巴顿(乌克兰语:Борис Євгенович Патон,1918年11月27日-),又译鲍里斯·帕通,是乌克兰的焊接技术专家,自1962年起一直担任乌克兰国家科学院
  • 盖尔·诺顿盖尔·安·诺顿(Gale Ann Norton,1954年3月11日-)堪萨斯州威奇托人,美国政治人物,美国共和党成员,曾任美国内政部长(2001年-2006年)。诺顿是第一位担任此职务的女性。
  • 艾粄青团,又称青草团、清明粿、艾粿、艾草果、艾粑粑等,闽南、潮汕称为青草粿、草仔粿、草粿、鼠麹粿等,客家人称为青粄、艾糍粑、艾糍、艾粄等。是中国南方部分地区清明节、寒食节
  • 奥马尔·邦戈哈吉·奥马尔·邦戈(el Hadj Omar Bongo,1935年12月30日-2009年6月8日),非洲国家加蓬终身总统,从1967年起担任总统直至去世。邦戈1935年12月30日出生于法属赤道非洲小城Lewai(现改
  • 朱自清朱自清(1898年11月22日-1948年8月12日),原名自华,字佩弦,号秋实,原籍浙江绍兴,生于江苏东海,长大于江苏扬州,故称“我是扬州人”。他毕业于国立北京大学(现北京大学),曾任国立清华大学(
  • 美国陆军第3步兵师一次大战二次大战韩战第3步兵师成立于1917年11月12日。是美国陆军的主力部队之一。美国陆军第3机械化步兵师目前隶属于第18空降军,该师拥有快速机动能力、强大的火力与突击力
  • 临清临清市是中国山东省省辖市,因为临近古清河而得名。临清置县于西汉,称清渊县。隶属巨鹿郡,后属魏郡,三国魏晋时期隶属冀州阳平郡。十六国之一的后赵,于建平元年(330年)更名为临清县,