在概率论和统计学中,偏度衡量实数随机变量概率分布的不对称性。偏度的值可以为正,可以为负或者甚至是无法定义。在数量上,偏度为负(负偏态)就意味着在概率密度函数左侧的尾部比右侧的长,绝大多数的值(不一定包括中位数在内)位于平均值的右侧。偏度为正(正偏态)就意味着在概率密度函数右侧的尾部比左侧的长,绝大多数的值(不一定包括中位数)位于平均值的左侧。偏度为零就表示数值相对均匀地分布在平均值的两侧,但不一定意味着其为对称分布。
偏度分为两种:
如果分布对称,那么平均值=中位数,偏度为零(此外,如果分布为单峰分布,那么平均值=中位数=众数)。
随机变量的偏度1为三阶标准矩,可被定义为:
其中μ3是三阶中心矩,σ是标准差。是期望算子。等式的最后以三阶累积量与二阶累积量的1.5次方的比率来表示偏度。这和用四阶累积量除去二阶累积量的平方来表示峰度的方法向类似。
偏度有时用Skew来表示。老教科书过去常常用3]来表示偏度的公式:
具有个值的样本的样本偏度为:
其中3是三阶样本中心矩,2是二阶样本中心距,即样本方差。
当:为个独立变量之和并且这些变量和具有相同的分布,那么的三阶累积量是的倍,的二阶累积量也是的倍,所以:。根据中心极限定理,当其接近高斯分布时变量之和的偏度减小。