欧氏几何

✍ dations ◷ 2025-06-28 19:02:12 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对 ( x , y ) {displaystyle (x,y)} 的集合。给定两个点 P = ( x , y ) {displaystyle P=(x,y)} 和 Q = ( z , t ) {displaystyle Q=(z,t)} ,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点 P {displaystyle P} 和 Q {displaystyle Q} 的直线可以定义成点的集合 A {displaystyle A} 满足

相关

  • 单一单关节炎(英语:monoarthritis)是一次只有一个关节发炎的关节炎。常见的病因包括:外伤、感染或结晶性关节炎。关节炎发作时,若同时影响到五个或五个以上关节的则称为多关节炎。造
  • 种子种子是种子植物的胚珠经受精后长成的结构,一般有种皮、胚和胚乳等组成。胚是种子中最主要的部分,萌发后长成新的个体。胚乳含有营养物质。种子是裸子植物、被子植物特有的繁殖
  • 乌普萨拉大学Universitas Regia Upsaliensis Academia Regia Upsaliensis栗色 白色乌普萨拉大学(瑞典语:Uppsala universitet)是一所国立的综合性的大学,位于瑞典的乌普萨拉,位于首都斯德哥
  • 图根原人图根原人(Orrorin tugenensis),又名千年人、千禧猿或土根猿,是已知最古老与人类有关的人族祖先,是原人属(或称千年人属)中的唯一种。种小名是以其化石发现地肯雅的图根山区命名。利
  • 伪复层柱状纤毛上皮伪复层纤毛柱状上皮属于另一种单层柱状上皮的变异,细胞皆具有纤毛,又可以称为假复层纤毛柱状上皮。之所以称做伪复层是因为其在切片下看起来细胞好像多于一层所造成的错误观念
  • 彼得一世彼得一世·阿列克谢耶维奇·罗曼诺夫(俄语:Пётр Алексе́евич Рома́нов,1672年6月9日-1725年2月8日)为俄罗斯帝国罗曼诺夫王朝的沙皇(1682年—1725年),及俄罗
  • 分子构型分子结构,或称分子立体结构、分子形状、分子几何、分子几何构型,建立在光谱学数据之上,用以描述分子中原子的三维排列方式。分子结构在很大程度上影响了化学物质的反应性、极性
  • 三北防护林三北防护林是中华人民共和国政府在中国北方三北(即西北、华北、东北)地区兴建的森林带,用以减缓日益加速的荒漠化和水土流失进程。由国家林业和草原局西北华北东北防护林建设局
  • 仁宗皇庆:1312年-1313年元仁宗爱育黎拔力八达(蒙古语: ᠠᠶᠤᠤᠷᠪᠠᠯᠪᠠᠳ,鲍培转写:Ayuur balbad,西里尔字母:Аюурбарбад;藏语:.mw-parser-output .uchen{font-family:"Qo
  • 松青超市松青超市(英语:MATSUSEI)成立于1986年,原隶属于味全集团。2015年11月12日,味全举行董事会,会中通过以4.5亿元出售松青超市让与全联福利中心。产地收送由关系企业的“中国青年商店