欧氏几何

✍ dations ◷ 2025-06-08 03:20:45 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对 ( x , y ) {displaystyle (x,y)} 的集合。给定两个点 P = ( x , y ) {displaystyle P=(x,y)} 和 Q = ( z , t ) {displaystyle Q=(z,t)} ,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点 P {displaystyle P} 和 Q {displaystyle Q} 的直线可以定义成点的集合 A {displaystyle A} 满足

相关

  • 胆管胆管为胆汁由肝脏传送至十二指肠的一个管道。肝内的胆小管逐级合并成左、右肝管,出肝门再合成为肝总管;肝总管与胆囊管汇合成胆总管。肝细胞持续不断的制造胆汁浓缩并储存于胆
  • 胆结石胆结石(英语:gallstones)是在胆囊内由胆汁化合物组成的结石。胆石症(choleliths)可以指胆囊中的结石,也可以指此一疾病。大多数胆结石患者(约80%)不曾有过症状。胆结石的患者中,有1-4
  • 圣巴泰勒米圣巴泰勒米(法语:Saint-Barthélemy),正式全名为圣巴泰勒米集体(Collectivité de Saint-Barthélemy),别名“圣巴斯”(Saint Barts、Saint Barths或Saint Barth),是一个法国海外属地
  • Fibrinogen纤维蛋白原(英语:Fibrinogen,又称为血纤维蛋白原)是一种蛋白质,能够溶解于水。血小板破裂时,会释出凝血致活酶,在钙离子的作用下催化凝血酶原变成凝血酶,凝血酶将血浆中原本可水溶的
  • 何雅玲何雅玲(1963年9月-),女,陕西西安人,工程热物理专家,从事热能高效传递、转换、利用及数值模拟的研究工作。1985年毕业于西安交通大学,1988年和2002年又取得该校硕士、博士学位。担任
  • 南海路南海路是中国青岛市市南区的一条东南-西北方向临海道路,也是全市最早建成的一批道路之一。道路东南接八大关风景区的正阳关路,与汇泉路、武昌路、文登路交汇,西北接莱阳路。路
  • 龙潭区坐标:24°51′52.62″N 121°12′59.53″E / 24.8646167°N 121.2165361°E / 24.8646167; 121.2165361龙潭区(台湾客家语四县腔:liungˇ tamˇ kiˊ;饶平腔:liung tam kiˇ;诏安
  • 旧古河庭园旧古河庭园(日语:きゅうふるかわていえん)是位于日本东京都北区的一座都立庭园。该庭园始建于1919年,最初是古河虎之助男爵的邸宅,包含有洋馆、西洋庭园、日本庭园,现在是国有财产
  • 国际汇率在经济学上,汇率(英语:exchange rate,foreign-exchange rate,forex rate,FX rate,或Agio)定义为两国货币之间兑换的比例。通常会将某一国的货币设为基准,以此换算金额价值他国几元的
  • 中将中将是许多国家军队中的职衔,介于少将和上将之间。这个职衔的来源可追溯至中世纪中,在战场上接受上将的命令,再传达下去的那个人。中文里的中将一词是来自于日本军制,日本军制中