首页 >
欧氏几何
✍ dations ◷ 2025-04-04 12:49:37 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对
(
x
,
y
)
{displaystyle (x,y)}
的集合。给定两个点
P
=
(
x
,
y
)
{displaystyle P=(x,y)}
和
Q
=
(
z
,
t
)
{displaystyle Q=(z,t)}
,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点
P
{displaystyle P}
和
Q
{displaystyle Q}
的直线可以定义成点的集合
A
{displaystyle A}
满足
相关
- 颅骨颅骨或者头骨、骷髅头是指人类或者许多脊椎动物的头部骨性结构。头骨之功能为支撑脸部,并保护脑部。头骨分为两部分:颅骨和下颌骨。一般所称之‘头颅’通常仅指颅骨,并未包含下
- 胫骨胫骨,位于小腿内侧,是小腿上的两块长骨之一。胫骨的大小居人体第二位,仅次于股骨。胫骨对支持人体体重起重要作用。胫骨上端膨大,与股骨下端以及髌骨共同构成膝关节。胫骨内侧面
- 形式逻辑逻辑(古希腊语:λογική;德语:Logik;法语:logique;英语:logic;意大利语、西班牙语、葡萄牙语: logica),又称理则、论理、推理、推论,是对有效推论的哲学研究。逻辑被使用在大部分的
- 理学硕士理学硕士(拉丁语:Magister Scientiæ;英语:Master of Science;缩写为 M.S. 或 M.Sc.),是在一些国家中颁发给学习科学与社会科学方面硕士级课程的学位。在美国教育中,理学硕士一般仅
- 普逵酒龙舌兰酒(西班牙文:Tequila),是墨西哥产、使用龙舌兰草的心(Piña,在植物学上,指的是这种植物的鳞茎部分)为原料所制造出的含酒精饮品,属蒸馏酒一类。通常提到龙舌兰酒时,可能意指的是
- 兄弟姊妹兄弟姊妹,也作兄弟姐妹,又称手足,指有相同父亲和母亲的人。较自己年长的男性为兄(口语中称“哥”),女性为姊(口语中称“姐”);比自己小的男性为弟,女性为妹。最年长的称大哥或大姐,余下
- 乡乡是一种行政区划单位,通常运用于乡村地区,可以指:
- 徐爵民徐爵民,国立台湾大学电机工程系学士、硕士、美国加州柏克莱大学电机工程与计算机科学系博士。 1988年进入工业技术研究院电子工业研究所,历任研究员、经理、副组长、组长、副
- 粿粿是闽语糕的总称,在客家语称为粄,是指用秫米、粳米磨成米浆后加入馅料,以粿印模出各种形状。因加入各种配料而衍生各种称法,如咸甜粿、甜粿、菜头粿、草仔粿、芋粿。因要多花功
- 正德正德(元年:1711年—末年:1716年)是日本中御门天皇的年号之一,共使用六年。。正德由《尚书·正义》中用来注《尚书·大禹谟》那句“禹曰:“於!帝念哉!德惟善政,政在养民。火、水、金、