欧氏几何

✍ dations ◷ 2025-01-31 11:07:12 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对 ( x , y ) {displaystyle (x,y)} 的集合。给定两个点 P = ( x , y ) {displaystyle P=(x,y)} 和 Q = ( z , t ) {displaystyle Q=(z,t)} ,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点 P {displaystyle P} 和 Q {displaystyle Q} 的直线可以定义成点的集合 A {displaystyle A} 满足

相关

  • Mt5f14 6d7 7s2(计算值)2, 8, 18, 32, 32, 15, 2(预测)第一:800.8(估值) kJ·mol−1 第二:1823.6(估值) kJ·mol−1 第三:2904.2(估值) kJ·mol−1 (主条目:鿏的同位素鿏(Meitnerium)是人工
  • 西塞罗马库斯·图利乌斯·西塞罗(Marcus Tullius Cicero,前106年1月3日-前43年12月7日,其名在拉丁语中读为(音译为基凯罗),西塞罗为英文音译,发音: /ˈsɪsᵻroʊ/),是罗马共和国晚期的哲学家
  • 大猩猩大猩猩是灵长目人科大猩猩属类人猿的总称。大猩猩是灵长目中体型最大与智力仅次于人类和黑猩猩的动物,它们生存于非洲大陆赤道附近丛林中,食素。至2006年为止依然有大猩猩分一
  • 黑洞黑洞(英语:black hole)是时空展现出引力的加速度极端强大,以至于没有粒子,甚至电磁辐射,像是光都无法逃逸的区域。广义相对论预测,足够紧密的质量可以扭曲时空,形成黑洞;不可能从该区
  • 滴管滴管(Pasteur pipette、Pipette)是实验室中用于转移少量液体的器皿。滴管为一根开端很窄的中空玻璃管,末端有橡胶球。滴管通常是玻璃制的,但也有的是塑胶制的。通常滴一滴为0.05
  • BOT建设-经营-转让模式(英语:Build–operate–transfer,缩写:BOT),港澳称为兴建-营运-移转模式,台湾称为民间兴建营运后转移模式,中国大陆又称建设-运营-移交模式,是民间参与公共建设的运用模
  • 双缝实验在量子力学里,双缝实验(double-slit experiment)是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以
  • 1140年重要事件及趋势重要人物
  • 里亚尔伊朗里亚尔(波斯语:ریال;货币编号IRR;标志:﷼)是伊朗目前的流通货币。辅币单位第纳尔。1里亚尔=100第纳尔。然而在一般日常生活中,伊朗人习惯以托曼(تومان/toman)来标示价钱,1
  • 虫黄藻虫黄藻 (Zooxanthella;复数Zooxanthellae,发音为/ˌzoʊ.əzænˈθɛliː/)是海藻的一种,是多种海洋动物和原生动物内的一种一种金黄色细胞间共生菌,特别是珊瑚纲生物,如石珊瑚和