欧氏几何

✍ dations ◷ 2025-10-22 16:25:22 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对 ( x , y ) {displaystyle (x,y)} 的集合。给定两个点 P = ( x , y ) {displaystyle P=(x,y)} 和 Q = ( z , t ) {displaystyle Q=(z,t)} ,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点 P {displaystyle P} 和 Q {displaystyle Q} 的直线可以定义成点的集合 A {displaystyle A} 满足

相关

  • 心肺复苏心肺复苏术(英语:Cardiopulmonary Resuscitation,CPR)是一种救助心搏骤停病患的急救措施,通过人工保持脑功能直到自然呼吸和血液循环恢复。心肺复苏术并非单一的技术,它包含了一系
  • 片利共生偏利共生(英语:Commensalism,又称为偏利共栖现象)是两种生物间共生关系的一种。是指在生物界中,某两物种间的生态关系,其中一种的生物会因这个关系而获得生存上的利益,但是,另一方的
  • 行政部门美国联邦行政部门(英语:United States Federal Executive Departments)是对于美国联邦政府中由总统指挥的行政机构总称,目前共有15个联邦行政部门;其中包含历史最为悠久的主要单
  • span class=Unicode/span谢费尔竖线(英语:Sheffer stroke),得名于Henry M. Sheffer(英语:Henry M. Sheffer),写为“| ”(见竖线)或“↑”,指示等价于合取运算的否定的逻辑运算。普通语言表达为“不全是即真”(No
  • 罗马城罗马(意大利语:Roma)是意大利首都及全国政治、经济、文化和交通中心,是世界著名的历史文化名城,古罗马文明的发祥地,因建城历史悠久并保存大量古迹而被昵称为“永恒之城”。其位于
  • 顾嗣立《清代学者像传》之《顾嗣立像》顾嗣立(1669年-1722年),字侠君,又字闾丘,江苏长洲县(今属苏州市)人。清朝诗人。顾予咸之子。清圣祖康熙八年生,少年失学,二十岁始学诗,好宾客,成立“酒人
  • 天名精天名精(学名:Carpesium abrotanoides)是菊科天名精属的植物。多年生草本;茎直立,上部多分枝呈二叉状;茎下部的长椭圆形叶子互生;头状花序多数,腋生半下垂,夏秋开黄色管状花;褐黑色瘦果
  • 桓台桓台县位于中国山东省中部偏北、小清河南岸,是淄博市所辖的一个县;位于山东半岛中部,地处鲁中山区和鲁北平原的结合地带。金哀宗正大五年(1228年)置新城县。1914年易名耏水县,旋改
  • 联邦贸易委员会联邦贸易委员会(Federal Trade Commission,缩写:FTC)是一个美国政府独立机构,成立于1914年。其主要任务是促进消费者保护及消除强迫性垄断等反竞争性商业行为。联邦贸易委员会法
  • 第66届金球奖第66届金球奖在2009年1月11日在美国加州比华利山举行,由NBC进行电视转播。截至2008年4月22日完整提名名单: