首页 >
欧氏几何
✍ dations ◷ 2025-11-12 01:35:59 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对
(
x
,
y
)
{displaystyle (x,y)}
的集合。给定两个点
P
=
(
x
,
y
)
{displaystyle P=(x,y)}
和
Q
=
(
z
,
t
)
{displaystyle Q=(z,t)}
,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点
P
{displaystyle P}
和
Q
{displaystyle Q}
的直线可以定义成点的集合
A
{displaystyle A}
满足
相关
- 肌肉萎缩症肌肉萎缩症(肌营养不良症,英语:Muscular dystrophy, MD),指一组损坏人体肌肉的遗传性疾病。肌营养不良症表现为进行性骨骼肌萎缩,肌肉蛋白质缺失,和肌肉细胞或组织的死亡。有九种疾
- 碘4d10 5s2 5p52, 8, 18, 18, 7蒸气压((正交))第一:1008.4 kJ·mol−1 第二:1845.9 kJ·mol−1 第三:3180 kJ·mol主条目:碘的同位素碘(Iodine)是一种非金属化学元素,元素符号是I
- 百度文库百度文库是百度于2009年11月12日发布的供网友在线分享文档的平台,当时称为“百度知道文档分享平台”。12月8日,百度知道文档分享更名为“百度文库”,并且升级了部分功能。百度
- 健康政策分析卫生政策和健康的关系
- 高脯氨酸血症高脯氨酸血症是一种遗传病,其会导致血浆脯氨酸水平升高。同时尿脯氨酸、羟脯氨酸、甘氨酸亦会增加其排泄量。此遗传病若与伴侣各携带同一缺陷基因,下一代罹病的几率不分性别皆
- 疣微菌纲疣微菌门(Verrucomicrobia)是一门被划出不久的细菌,包括少数几个被识别的种类,主要被发现于水生和土壤环境,或者人类粪便中。还有很多未被成功培养的种类是和真核宿主共生的,包括
- Da原子质量单位(Atomic mass unit,amu),现称统一原子质量单位(Unified atomic mass unit,u)或道尔顿(dalton,Da),是用来衡量原子质量的单位,定义为静止未键结且处于基态碳12原子质量的1/12
- 第戎1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。第戎(法语:Dijon),法国东部城市,勃艮第-弗朗什-孔泰大区的首府和科多尔省的省会,也是该大区内
- 莽古尔泰莽古尔泰(满语:ᠮᠠᠩᡤᡡᠯᡨᠠᡳ,穆麟德:Manggūltai,太清:Manggvltai;1587年-1633年1月11日),爱新觉罗氏。清太祖努尔哈赤的第五子,四大贝勒之一。努尔哈赤的第二位福晋富察氏所生。
- 运动与神经元关系体能锻炼,又称体能训练、体适能训练,泛指所有通过运动方式,来达到维持与发展适当体能、增进身体健康的身体活动。它的目标有许多种,包括:增强肌肉与循环系统、增进运动技能与身体
