绝对赋值

✍ dations ◷ 2025-07-26 15:55:10 #抽象代数

绝对赋值是Hensel引进p进数后发展出的一个概念,常用于单变量代数函数论或者类域论方面的研究。

确切的说,绝对赋值是一个函数,是整环或域的元素的“大小”的度量。更确切地说,对整环D,一个绝对赋值环D是任何元素从D到实数R的映射x| x |满足下列条件:

从第二条和第三条,可以看出,| 1 |=1,| -1| = 1。此外,对于任意正整数 n,

注意有些英文书绝对赋值叫赋值(valuations)、范数(norm)、量值(magnitude)。

如果|x+ y|满足更强的属性 |x+ y|≤MAX(|x|,|y|),那么|x|被称为超度量或非阿基米德绝对赋值,否则就叫阿基米德绝对赋值。每一个整环有至少有一个绝对赋值,称为平凡赋值。这种绝对赋值是:当x= 0时|x|= 0,x≠ 0时|x|= 1,有限域只能有平凡赋值。|  |1 < 1 当且仅当 |  |2 < 1.,那么这两个绝对赋值相等.如果两个非平凡绝对赋值是相等的,那么一些指数e,有 |  |1 = |  |2。(请注意,不能提高绝对赋值的次幂来获得另一个不同的绝对赋值,例如对实数,一个绝对赋值平方后产生另一个不同值,这种情况就不是一个绝对赋值函数。)绝对赋值可导致到等价类来理解,换言之绝对赋值的等价类,被称为一个素点。奥斯特洛夫斯基定理指出,有理数Q中,p-adic数是非平凡绝对赋值,每一个素数p的绝对赋值是有理数Q的素点:

素点的定义就来自上面普通绝对赋值和p的绝对赋值。

R = C {\displaystyle \scriptstyle {\mathfrak {R}}=\mathbb {C} } 参数化后解析零点集为,则作为多项式环的形式幂级数环:

映射 v : C Z {\displaystyle \scriptstyle v:\mathbb {C} \rightarrow \mathbb {Z} } 的限制:

逆映射也可能得到延拓(扩张):

若形式幂级数环不是多项式环产生的,则容易证明上面逆映射延拓是赋值,在几何上叫曲线(一维解析代数簇)的交点。如:

相关

  • 非洲人类锥虫病非洲人类锥虫病(法语:Trypanosomiasis africain; 英语:African trypanosomiasis)或称昏睡病、嗜睡病(英语:sleeping sickness),是一种由布氏锥虫(英语:Trypanosoma brucei)引起的寄生虫
  • 好氧菌好氧生物(英语:Aerobic organism,或 aerobe),又译为好气生物、耗氧生物、需氧生物,是能在有氧的环境中生存及生长的生物。好氧生物利用氧的化学反应来分解糖及脂肪,以获得能量。几
  • 满-通古斯语族满-通古斯语族(又称通古斯语系或通古斯-满语族)是世界主要语系之一,其下又分满语支和通古斯语支。通古斯语支的语言有长元音,满语支的语言复元音多;辅音的组合一般不超过两个音素,
  • 海平面上升海平面上升是海平面由于冰原和冰川的融化(通常是因为全球变暖)而上升的一个现象。其对气候变迁的影响,主要是反照率反馈的结果。2007年时,联合国政府间气候变化专门委员会预计了
  • 缅语缅甸缅甸语(မြန်မာဘာသာ)属汉藏语系藏缅语族,以仰光音为标准。它是缅甸联邦的官方语言,在该国有大约3200万人使用,而且在孟加拉国、马来西亚、泰国、美国也有少量分布。
  • UBC银色与金色科罗拉多大学博尔德分校(英语:University of Colorado Boulder;常用缩写:CU Boulder)是科罗拉多大学系统(英语:University of Colorado)的旗舰校。它成立于1876年,比科罗拉
  • 张京育张京育(1937年4月27日-),生于湖南湘潭,中华民国政治人物、教育家,中国国民党籍,曾任政治大学校长,中华民国行政院大陆委员会主任委员、总统府国策顾问。获国立政治大学学士、硕士学
  • 无尾目(学名:Anura)是两生纲的一个目,其下生物即蛙或蟾。该目的生物成体基本无尾,卵一般产于水中,孵化成蝌蚪,用鳃呼吸,经过变态,成体主要用肺呼吸,但多数皮肤也有部分呼吸功能。无尾
  • 俚族俚人,中国南方古代民族,是发源于广东境内的古越族一支骆越,属南越族后裔的一个分支。东汉改称“里人”。俚人最早见于范晔《后汉书·南蛮西南夷列传》记载:“建武十二年(公元36
  • 多米尼加本文记述的是多米尼加共和国历史。伊斯帕尼奥拉岛居住着泰诺人。他们称此岛为基斯克亚(Quisqueya)和阿依提(Ayiti)。意为大地的母亲和高山之地。在哥伦布到来之时,此岛分为五大酋