首页 >
外接圆
✍ dations ◷ 2025-11-03 23:54:45 #外接圆
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理,
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
{displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R}
。
若以"S"表示三角形面积,由于
S
=
1
2
a
b
sin
C
{displaystyle S={frac {1}{2}}absin C}
,整理得到
R
=
a
b
c
4
S
{displaystyle R={frac {abc}{4S}}}
。过三点圆的方程为
|
x
2
+
y
2
x
y
1
x
1
2
+
y
1
2
x
1
y
1
1
x
2
2
+
y
2
2
x
2
y
2
1
x
3
2
+
y
3
2
x
3
y
3
1
|
=
0
{displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0}
,故三角形外心坐标为
(
|
x
1
2
+
y
1
2
y
1
1
x
2
2
+
y
2
2
y
2
1
x
3
2
+
y
3
2
y
3
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
,
|
x
1
x
1
2
+
y
1
2
1
x
2
x
2
2
+
y
2
2
1
x
3
x
3
2
+
y
3
2
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
)
{displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得:
A
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
{displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}}
,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为:
R
=
(
a
c
+
b
d
)
(
a
d
+
b
c
)
(
a
b
+
c
d
)
4
A
{displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}}
。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积
S
n
{displaystyle S_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为故此,当n趋向无穷时,另外,其内切圆的面积
s
n
{displaystyle s_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为:
相关
- 膜蛋白膜蛋白(英语:membrane protein)是指能够结合或整合到细胞或细胞器的膜上的蛋白质的总称。而细胞中一半以上的蛋白质可以与膜以不同形式结合。根据与膜结合强度的不同,膜蛋白可以
- 喹硫平喹硫平(Quetiapine),由阿斯利康制药商品名为思乐康、思瑞康(Seroquel),而由奥利昂集团(Orion Pharma)商品名为Ketipinor,两者都是富马酸喹硫平盐的药物,是非典型的抗精神病用药,主要治
- 日耳曼民族日耳曼人(拉丁语:Germani,德语:Germanen)是一些语言、文化和习俗相近的民族(部落社会)的总称。这些民族从公元前2千年到4世纪生活在欧洲北部和中部。在五世纪时的民族大迁徙使日耳
- 吉耶曼罗歇·夏尔·路易·吉耶曼(法语:Roger Charles Louis Guillemin,1924年1月11日-),法国科学家,后加入美国国籍。他于1976年获得美国国家科学奖章,1977年获得诺贝尔生理学或医学奖。吉
- 片状片剂或锭剂(英语:Tablet)系指药物与辅料混合均匀后经制粒或不经制粒压制成的片状或异型片状制剂可供内服和外用,是目前临床应用最广泛的剂型之一。片剂由药物和辅料二部分组成,辅
- 彗星美人《彗星美人》(英文原名:All About Eve,又名《四面夏娃》)是一部发行于1950年的剧情电影,编剧和导演约瑟夫·曼凯维奇,影片根据玛丽·奥尔的短篇小说《伊芙的智慧》(英文:The Wisdom
- A.斯卡拉蒂彼得罗·亚历山德罗·加斯帕雷·斯卡拉蒂(意大利语:Pietro Alessandro Gaspare Scarlatti,1660年5月2日-1725年10月24日),意大利巴洛克风格作曲家,以歌剧和室内康塔塔而闻名。亚历
- abbr class=abbr title=R66: 长期接触可能引起皮肤干裂R66/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
- 李珥李珥(1536年-1584年),朝鲜王朝知名儒学者。字叔献、见龙, 号栗谷、石潭、愚斋,朝鲜半岛后世尊称其为李栗谷或栗谷先生。 朝鲜半岛朱子学新学派即“主气论”学派的代表人物。畿湖学
- 公元前13世纪前1300年至前1201年的这一段期间被称为前13世纪。
