首页 >
外接圆
✍ dations ◷ 2025-04-03 11:04:36 #外接圆
在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:若以R表示三角形外接圆半径,那么根据正弦定理,
a
sin
A
=
b
sin
B
=
c
sin
C
=
2
R
{displaystyle {frac {a}{sin A}}={frac {b}{sin B}}={frac {c}{sin C}}=2R}
。
若以"S"表示三角形面积,由于
S
=
1
2
a
b
sin
C
{displaystyle S={frac {1}{2}}absin C}
,整理得到
R
=
a
b
c
4
S
{displaystyle R={frac {abc}{4S}}}
。过三点圆的方程为
|
x
2
+
y
2
x
y
1
x
1
2
+
y
1
2
x
1
y
1
1
x
2
2
+
y
2
2
x
2
y
2
1
x
3
2
+
y
3
2
x
3
y
3
1
|
=
0
{displaystyle {begin{vmatrix}x^{2}+y^{2}&x&y&1\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1end{vmatrix}}=0}
,故三角形外心坐标为
(
|
x
1
2
+
y
1
2
y
1
1
x
2
2
+
y
2
2
y
2
1
x
3
2
+
y
3
2
y
3
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
,
|
x
1
x
1
2
+
y
1
2
1
x
2
x
2
2
+
y
2
2
1
x
3
x
3
2
+
y
3
2
1
|
2
|
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
|
)
{displaystyle ({frac {begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\x_{2}^{2}+y_{2}^{2}&y_{2}&1\x_{3}^{2}+y_{3}^{2}&y_{3}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}},{frac {begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\x_{2}&x_{2}^{2}+y_{2}^{2}&1\x_{3}&x_{3}^{2}+y_{3}^{2}&1end{vmatrix}}{2{begin{vmatrix}x_{1}&y_{1}&1\x_{2}&y_{2}&1\x_{3}&y_{3}&1end{vmatrix}}}})}圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得:
A
=
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
(
s
−
d
)
{displaystyle A={sqrt {(s-a)(s-b)(s-c)(s-d)}}}
,其中a, b, c, d为四边的长度,s为半周长。其外接圆半径为:
R
=
(
a
c
+
b
d
)
(
a
d
+
b
c
)
(
a
b
+
c
d
)
4
A
{displaystyle R={frac {sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}}
。边长相等的四边形中,以圆内接四边形最大。所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:面积为:正n 边形的面积
S
n
{displaystyle S_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为故此,当n趋向无穷时,另外,其内切圆的面积
s
n
{displaystyle s_{n}}
与其外接圆的面积
A
n
{displaystyle A_{n}}
之比为:
相关
- 科学论实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
- 封闭系统在古典力学之中,封闭系统是指一个不与外界交换能量(作功或热量)且不交换质量的系统,也可被视为热力学之中的孤立系统。在热力学之中,封闭系统是指一个只与外界交换能量(作功或热量
- 镁的同位素镁(原子量:24.3050(6))共有22个同位素,其中有3个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
- 双股DNA病毒脱氧核糖核酸病毒(英语:DNA virus),又称DNA病毒,其遗传物质为DNA。一般为正链DNA病毒。医学导航: 病毒病病毒(蛋白质)/分类cutn/syst (hppv/艾滋病, 流感/疱疹/人畜共患)/人名体
- 贿赂贿赂、受贿罪是指个人利用职务上的便利,索取他人财物,或者非法收受他人财物,为他人谋取利益的行为。而这些利益并不能从正常的合法途径中得到。此为贪污犯罪之一。商业贿赂是指
- 法兰克福宪法保罗教堂宪法(保罗教会宪法) (Paulskirchenverfassung)是第一部整个德国范围的由民主决议产生的宪法,然而这部宪法却从来没有生效过。它作为“德意志帝国宪法”于1849年3月27日
- Shirer, William L.威廉·劳伦斯·夏勒(英语:William Lawrence Shirer,1904年2月23日- 1993年12月28日)是一位美国作家、战地记者和历史学家,曾为《芝加哥论坛报》、《国际新闻社》记者,代表作为《第
- 恒星周期自转周期(英语:Rotation period)在天文学中是指当一个物体绕着自己的转轴(英语:Rotation around a fixed axis),相对于背景的恒星完成一次完整转动的时间。自转周期和行星的恒星日
- 美景宫美景宫(德语:Schloss Belvedere,又音译贝尔维第宫)是位于奥地利首都维也纳的一个巴洛克建筑风格的宫殿。美景宫曾是哈布斯堡王朝将军欧根亲王的宫殿。在欧根亲王去世后,美景宫于1
- 癸酉癸酉为干支之一,顺序为第10个。前一位是壬申,后一位是甲戌。论阴阳五行,天干之癸属阴之水,地支之酉属阴之金,是金生水相生。中国传统纪年农历的干支纪年中一个循环的第10年称“癸