四次方程

✍ dations ◷ 2025-08-02 02:31:16 #方程,初等代数,多项式

四次方程,是未知数最高次数不超过四次的多项式方程。一个典型的一元四次方程的通式为:

本篇只讨论一元四次方程,并简称为四次方程。

自然,人们为了找到这些根做了许多努力。就像其它多项式,有时可能对一个四次方程分解出因式;但更多的时候这样的工作是极困难的,尤其是当根是无理数或复数时。因此找到一个通式解法或运算法则(就像二次方程那样, 能解所有的一元二次方程)是很有用的。经过很多努力之后,人们终于找到了一个可以解出任何四次方程的运算法则;不过之后埃瓦里斯特·伽罗瓦证明,这样的一种方法在五次方程这里止步了;也就是说,四次方程是次数最高的一种方程,它的解可以通过一个运算法则,由方程未知数前的系数给出。对于五次方程以上的方程,人们就需要一种更为有效的方法寻找方程的代数解,如同对于五次方程以下的方程所做的那样。

由于四次方程的复杂性(参见下文),求解公式并不经常被使用。如果只要求求解有理实根,可以通过(对于任意次数的多项式都为真)试错法,或是使用鲁菲尼法则(只要所给的多项式的系数都是有理的)求出。到了计算机时代,通过牛顿法,人们可以使用数值逼近的方法快速得到所求的解。但是如果要求四次方程被精确地解出,你可以参见下文关于方法的概述。

Δ = 256 a 3 e 3 192 a 2 b d e 2 128 a 2 c 2 e 2 + 144 a 2 c d 2 e 27 a 2 d 4 + 144 a b 2 c e 2 6 a b 2 d 2 e 80 a b c 2 d e + 18 a b c d 3 + 16 a c 4 e 4 a c 3 d 2 27 b 4 e 2 + 18 b 3 c d e 4 b 3 d 3 4 b 2 c 3 e + b 2 c 2 d 2 {\displaystyle {\Delta =256a^{3}e^{3}-192a^{2}bde^{2}-128a^{2}c^{2}e^{2}+144a^{2}cd^{2}e-27a^{2}d^{4}+144ab^{2}ce^{2}-6ab^{2}d^{2}e-80abc^{2}de+18abcd^{3}+16ac^{4}e-4ac^{3}d^{2}-27b^{4}e^{2}+18b^{3}cde-4b^{3}d^{3}-4b^{2}c^{3}e+b^{2}c^{2}d^{2}}} 的值以后,便可以从中得到 x {\displaystyle x\,} 的值:

若任何一个 z {\displaystyle z\,} 的值为负数或复数,那么一些 x {\displaystyle x\,} 的值便是复数。

开始时,四次方程首先要被转化为低级的四次方程。

要让以下四次方程变成标准的四次方程,先在等式两边分别除以 a {\displaystyle a\,}

第一步:消除 x 3 {\displaystyle x^{3}\,} 列。为了做到这一步,先把变量 x {\displaystyle x\,} 变成 u {\displaystyle u\,} ,其中

将变量替换: ( u b 4 a ) 4 + b a ( u b 4 a ) 3 + c a ( u b 4 a ) 2 + d a ( u b 4 a ) + e a = 0. {\displaystyle \left(u-{b \over 4a}\right)^{4}+{b \over a}\left(u-{b \over 4a}\right)^{3}+{c \over a}\left(u-{b \over 4a}\right)^{2}+{d \over a}\left(u-{b \over 4a}\right)+{e \over a}=0.}

展开后变成: ( u 4 b a u 3 + 6 u 2 b 2 16 a 2 4 u b 3 64 a 3 + b 4 256 a 4 ) + b a ( u 3 3 u 2 b 4 a + 3 u b 2 16 a 2 b 3 64 a 3 ) + c a ( u 2 u b 2 a + b 2 16 a 2 ) + d a ( u b 4 a ) + e a . {\displaystyle \left(u^{4}-{b \over a}u^{3}+{6u^{2}b^{2} \over 16a^{2}}-{4ub^{3} \over 64a^{3}}+{b^{4} \over 256a^{4}}\right)+{b \over a}\left(u^{3}-{3u^{2}b \over 4a}+{3ub^{2} \over 16a^{2}}-{b^{3} \over 64a^{3}}\right)+{c \over a}\left(u^{2}-{ub \over 2a}+{b^{2} \over 16a^{2}}\right)+{d \over a}\left(u-{b \over 4a}\right)+{e \over a}.}

整理后变成以u为变量的表达式

现在改变表达式的系数,为

结果就是我们期望的低级四次方程,为

如果 β = 0 {\displaystyle \beta =0\,} 那么等式就变成了双二次方程,更加容易解决(解释上面);利用反向替代,我们可以获得我们要解决的变量 x {\displaystyle x\,} 的值.

这种降低的四次方程的方法是被费拉里发现的,然而,这种方式曾经被发现过。接下来,利用一个恒等式

从方程 (1)和上式,得出:

结果把 u 4 {\displaystyle u^{4}\,} 配成了完全平方式: ( u 2 + α ) 2 {\displaystyle (u^{2}+\alpha )^{2}\,} 。左式中, α u 2 {\displaystyle \alpha u^{2}\,} 并不出现,但其符号已改变并被移到右边。

下一步是在方程 ( 2 ) {\displaystyle \left(2\right)\,} 左边的完全平方中插入变量 y {\displaystyle y\,} ,相应地在右边插入一项 2 y {\displaystyle 2y\,} 。根据恒等式

与等式(2)相加,得

也就是

现在我们需要寻找一个 y {\displaystyle y\,} 值,使得方程 ( 3 ) {\displaystyle \left(3\right)\,} 的右边为完全平方。而这只要令二次方程的判别式为零。为此,首先展开完全平方式为二次式:

右边的二次式有三个系数。可以验证,把第二项系数平方,再减去第一与第三项系数之积的四倍,可得到零:

因此,为了使方程(3)的右边为完全平方,我们必须解出下列方程:

把二项式与多项式相乘,

这是关于 y {\displaystyle y\,} 的三次方程。两边除以 2 {\displaystyle 2\,}

方程 ( 4 ) {\displaystyle \left(4\right)\,} 是嵌套的三次方程。为了解方程 ( 4 ) {\displaystyle \left(4\right)\,} ,我们首先用换元法把它转化为减少次数的三次方程:

方程 ( 4 ) {\displaystyle \left(4\right)\,} 变为

展开,得

合并同类项,得

这是嵌套的三次方程。

则此三次方程变为

方程 ( 5 ) {\displaystyle \left(5\right)\,} 的解(三个解中任何一个都可以)为

则原来的嵌套三次方程的解为

y {\displaystyle y\,} 的值已由 ( 6 ) {\displaystyle \left(6\right)\,} 式给定,现在知道等式 ( 3 ) {\displaystyle \left(3\right)\,} 的右边是完全平方的形式

从而它可分解因式为:

因此方程 ( 3 ) {\displaystyle \left(3\right)\,} 化为

等式 ( 7 ) {\displaystyle \left(7\right)\,} 两边各有一个乘起来的完全平方式。两完全平方式相等。

如果两平方式相等,则两平方式的因子也相等,即有下式:

u {\displaystyle u\,} 合并同类项,得

方程 ( 8 ) {\displaystyle \left(8\right)\,} 是关于 u {\displaystyle u\,} 的二次方程。其解为

化简,得

这就是降低次数的四次方程的解,因此原来的四次方程的解为

给定一个四次方程

其解可用如下方法求出:

此即所求。

还有解四次方程的其他方法,或许更好些。费拉里首先发现这些迷宫般的解之一。他所解的方程是

它已经化为简约的形式。它有一对解,可由上面给出的公式得到。

此四次方程是下列两个二次方程之积:

以及

由于

因此

则方程 ( 9 ) {\displaystyle \left(9\right)\,} 变为

同时有(未知的)变量 w {\displaystyle w\,} v {\displaystyle v\,} 使方程 ( 10 ) {\displaystyle \left(10\right)\,} 变为

方程 ( 11 ) {\displaystyle \left(11\right)\,} ( 12 ) {\displaystyle \left(12\right)\,} 相乘,得

把方程 ( 13 ) {\displaystyle \left(13\right)\,} 与原来的二次方程比较,可知

因此

方程 ( 12 ) {\displaystyle \left(12\right)\,} 的解为

这两个解中的一个应是所求的实解。

写出式子 x 4 + a x 3 + b x 2 + c x + d = 0 {\displaystyle x^{4}+ax^{3}+bx^{2}+cx+d=0} ,令 y = x + a / 4 {\displaystyle y=x+a/4} ,把上式改写为 y 4 + e y 2 + f y + g = 0 {\displaystyle y^{4}+ey^{2}+fy+g=0} ,再利用系数 e , f , g {\displaystyle e,f,g} 造出另一式子: z 3 + ( e / 2 ) z 2 + ( ( e 2 4 g ) / 16 ) z f 2 / 64 = 0 {\displaystyle z^{3}+(e/2)z^{2}+((e^{2}-4g)/16)z-f^{2}/64=0} , 求出 z {\displaystyle z} 的三根,并用 p , q , r {\displaystyle p,q,r} 代表它们。那么 y {\displaystyle y} 的四个根就是 + p + q + r {\displaystyle +{\sqrt {p}}+{\sqrt {q}}+{\sqrt {r}}} + p q r {\displaystyle +{\sqrt {p}}-{\sqrt {q}}-{\sqrt {r}}} p + q r {\displaystyle -{\sqrt {p}}+{\sqrt {q}}-{\sqrt {r}}} p q + r {\displaystyle -{\sqrt {p}}-{\sqrt {q}}+{\sqrt {r}}}

合并来看二次方程根的样式为 j A {\displaystyle j{\sqrt {A}}} ,其中 j { h 0 , h 1 } ,                     h 2 = 1 {\displaystyle j\in \{h^{0},h^{1}\},\ \ \ \ \ \ \ \ \ \ h^{2}=1} 三次方程根的样式为 j 1 A 3 + j 2 B 3 {\displaystyle j_{1}{\sqrt{A}}+j_{2}{\sqrt{B}}} ,其中 j { h 0 , h 1 , h 2

相关

  • 绿色建筑可持续发展主题可再生能源主题环境主题绿色建筑或绿建筑(英语:Green Building),是指本身及其使用过程在生命周期中,如选址、设计、建设、营运、维护、翻新、拆除等各阶段皆达成环
  • 教育开支这个列表展示的是各个国家或地区政府教育支出所占GDP的比重;时间段为1980-2014。其中,只有中国和特立尼达和多巴哥的数据来源并非世界银行。下表中的中国数据来自于中国教育部
  • 临床免疫学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学免疫学(英语:Immunology)是生物医学的一
  • 俞虹俞虹(1928年-),北京人,中华人民共和国翻译家。毕业于华北学院、华北大学、北京外国语大学。1928年,俞虹出生在北京。1947年,俞虹在北京华北学院俄语系读书,第二年转入华北大学,再转入
  • R23公路 (俄罗斯)R23联邦公路,原编号M20,2018年起更改为R23,又称普斯科夫公路(Псков),是俄罗斯的一条干线公路,始于圣彼得堡,经普斯科夫,以拉脱维亚边界为终点,全长261公里。也是欧洲E95公路(英语:E
  • 胡延照胡延照(1951年4月-),男,汉族,浙江绍兴人,中华人民共和国政治人物,曾任上海市人民政府副市长,现任上海市人大常委会副主任,上海行政学院院长。
  • 阿凡达3《阿凡达3》(英语:)是一部预计于2023年上映的美国史诗式科幻电影,由詹姆斯·卡梅隆撰写剧本、剪辑和执导。本片为2021年电影《阿凡达2》的续集,由萨姆·沃辛顿和佐伊·索尔达娜主
  • 纯恋纯恋 (すみれ、1987年7月28日-2009年6月11日),原名石川安里沙(いしかわ ありさ),是日本岩手县胆泽町出生的女性模特儿,她是代表于潮流时尚杂志《小恶魔ageha》的专属模特儿,亦在同时
  • 梅根·凯利梅根·玛丽·凯利(英语:Megyn Marie Kelly,1970年11月18日-),曾用名梅根·肯德尔(Megyn Kendall),是美国一位新闻记者、主播、新闻和政治评论人,她曾经还是一位律师。2004年至2017年间
  • 质光比质光比,通常的符号是 Υ {\displaystyle \Upsilon } ☉/☉),作为计算恒星的基本常数。星系和星系团的质光比都远大于