四次方程

✍ dations ◷ 2025-04-02 16:59:00 #方程,初等代数,多项式

四次方程,是未知数最高次数不超过四次的多项式方程。一个典型的一元四次方程的通式为:

本篇只讨论一元四次方程,并简称为四次方程。

自然,人们为了找到这些根做了许多努力。就像其它多项式,有时可能对一个四次方程分解出因式;但更多的时候这样的工作是极困难的,尤其是当根是无理数或复数时。因此找到一个通式解法或运算法则(就像二次方程那样, 能解所有的一元二次方程)是很有用的。经过很多努力之后,人们终于找到了一个可以解出任何四次方程的运算法则;不过之后埃瓦里斯特·伽罗瓦证明,这样的一种方法在五次方程这里止步了;也就是说,四次方程是次数最高的一种方程,它的解可以通过一个运算法则,由方程未知数前的系数给出。对于五次方程以上的方程,人们就需要一种更为有效的方法寻找方程的代数解,如同对于五次方程以下的方程所做的那样。

由于四次方程的复杂性(参见下文),求解公式并不经常被使用。如果只要求求解有理实根,可以通过(对于任意次数的多项式都为真)试错法,或是使用鲁菲尼法则(只要所给的多项式的系数都是有理的)求出。到了计算机时代,通过牛顿法,人们可以使用数值逼近的方法快速得到所求的解。但是如果要求四次方程被精确地解出,你可以参见下文关于方法的概述。

Δ = 256 a 3 e 3 192 a 2 b d e 2 128 a 2 c 2 e 2 + 144 a 2 c d 2 e 27 a 2 d 4 + 144 a b 2 c e 2 6 a b 2 d 2 e 80 a b c 2 d e + 18 a b c d 3 + 16 a c 4 e 4 a c 3 d 2 27 b 4 e 2 + 18 b 3 c d e 4 b 3 d 3 4 b 2 c 3 e + b 2 c 2 d 2 {\displaystyle {\Delta =256a^{3}e^{3}-192a^{2}bde^{2}-128a^{2}c^{2}e^{2}+144a^{2}cd^{2}e-27a^{2}d^{4}+144ab^{2}ce^{2}-6ab^{2}d^{2}e-80abc^{2}de+18abcd^{3}+16ac^{4}e-4ac^{3}d^{2}-27b^{4}e^{2}+18b^{3}cde-4b^{3}d^{3}-4b^{2}c^{3}e+b^{2}c^{2}d^{2}}} 的值以后,便可以从中得到 x {\displaystyle x\,} 的值:

若任何一个 z {\displaystyle z\,} 的值为负数或复数,那么一些 x {\displaystyle x\,} 的值便是复数。

开始时,四次方程首先要被转化为低级的四次方程。

要让以下四次方程变成标准的四次方程,先在等式两边分别除以 a {\displaystyle a\,}

第一步:消除 x 3 {\displaystyle x^{3}\,} 列。为了做到这一步,先把变量 x {\displaystyle x\,} 变成 u {\displaystyle u\,} ,其中

将变量替换: ( u b 4 a ) 4 + b a ( u b 4 a ) 3 + c a ( u b 4 a ) 2 + d a ( u b 4 a ) + e a = 0. {\displaystyle \left(u-{b \over 4a}\right)^{4}+{b \over a}\left(u-{b \over 4a}\right)^{3}+{c \over a}\left(u-{b \over 4a}\right)^{2}+{d \over a}\left(u-{b \over 4a}\right)+{e \over a}=0.}

展开后变成: ( u 4 b a u 3 + 6 u 2 b 2 16 a 2 4 u b 3 64 a 3 + b 4 256 a 4 ) + b a ( u 3 3 u 2 b 4 a + 3 u b 2 16 a 2 b 3 64 a 3 ) + c a ( u 2 u b 2 a + b 2 16 a 2 ) + d a ( u b 4 a ) + e a . {\displaystyle \left(u^{4}-{b \over a}u^{3}+{6u^{2}b^{2} \over 16a^{2}}-{4ub^{3} \over 64a^{3}}+{b^{4} \over 256a^{4}}\right)+{b \over a}\left(u^{3}-{3u^{2}b \over 4a}+{3ub^{2} \over 16a^{2}}-{b^{3} \over 64a^{3}}\right)+{c \over a}\left(u^{2}-{ub \over 2a}+{b^{2} \over 16a^{2}}\right)+{d \over a}\left(u-{b \over 4a}\right)+{e \over a}.}

整理后变成以u为变量的表达式

现在改变表达式的系数,为

结果就是我们期望的低级四次方程,为

如果 β = 0 {\displaystyle \beta =0\,} 那么等式就变成了双二次方程,更加容易解决(解释上面);利用反向替代,我们可以获得我们要解决的变量 x {\displaystyle x\,} 的值.

这种降低的四次方程的方法是被费拉里发现的,然而,这种方式曾经被发现过。接下来,利用一个恒等式

从方程 (1)和上式,得出:

结果把 u 4 {\displaystyle u^{4}\,} 配成了完全平方式: ( u 2 + α ) 2 {\displaystyle (u^{2}+\alpha )^{2}\,} 。左式中, α u 2 {\displaystyle \alpha u^{2}\,} 并不出现,但其符号已改变并被移到右边。

下一步是在方程 ( 2 ) {\displaystyle \left(2\right)\,} 左边的完全平方中插入变量 y {\displaystyle y\,} ,相应地在右边插入一项 2 y {\displaystyle 2y\,} 。根据恒等式

与等式(2)相加,得

也就是

现在我们需要寻找一个 y {\displaystyle y\,} 值,使得方程 ( 3 ) {\displaystyle \left(3\right)\,} 的右边为完全平方。而这只要令二次方程的判别式为零。为此,首先展开完全平方式为二次式:

右边的二次式有三个系数。可以验证,把第二项系数平方,再减去第一与第三项系数之积的四倍,可得到零:

因此,为了使方程(3)的右边为完全平方,我们必须解出下列方程:

把二项式与多项式相乘,

这是关于 y {\displaystyle y\,} 的三次方程。两边除以 2 {\displaystyle 2\,}

方程 ( 4 ) {\displaystyle \left(4\right)\,} 是嵌套的三次方程。为了解方程 ( 4 ) {\displaystyle \left(4\right)\,} ,我们首先用换元法把它转化为减少次数的三次方程:

方程 ( 4 ) {\displaystyle \left(4\right)\,} 变为

展开,得

合并同类项,得

这是嵌套的三次方程。

则此三次方程变为

方程 ( 5 ) {\displaystyle \left(5\right)\,} 的解(三个解中任何一个都可以)为

则原来的嵌套三次方程的解为

y {\displaystyle y\,} 的值已由 ( 6 ) {\displaystyle \left(6\right)\,} 式给定,现在知道等式 ( 3 ) {\displaystyle \left(3\right)\,} 的右边是完全平方的形式

从而它可分解因式为:

因此方程 ( 3 ) {\displaystyle \left(3\right)\,} 化为

等式 ( 7 ) {\displaystyle \left(7\right)\,} 两边各有一个乘起来的完全平方式。两完全平方式相等。

如果两平方式相等,则两平方式的因子也相等,即有下式:

u {\displaystyle u\,} 合并同类项,得

方程 ( 8 ) {\displaystyle \left(8\right)\,} 是关于 u {\displaystyle u\,} 的二次方程。其解为

化简,得

这就是降低次数的四次方程的解,因此原来的四次方程的解为

给定一个四次方程

其解可用如下方法求出:

此即所求。

还有解四次方程的其他方法,或许更好些。费拉里首先发现这些迷宫般的解之一。他所解的方程是

它已经化为简约的形式。它有一对解,可由上面给出的公式得到。

此四次方程是下列两个二次方程之积:

以及

由于

因此

则方程 ( 9 ) {\displaystyle \left(9\right)\,} 变为

同时有(未知的)变量 w {\displaystyle w\,} v {\displaystyle v\,} 使方程 ( 10 ) {\displaystyle \left(10\right)\,} 变为

方程 ( 11 ) {\displaystyle \left(11\right)\,} ( 12 ) {\displaystyle \left(12\right)\,} 相乘,得

把方程 ( 13 ) {\displaystyle \left(13\right)\,} 与原来的二次方程比较,可知

因此

方程 ( 12 ) {\displaystyle \left(12\right)\,} 的解为

这两个解中的一个应是所求的实解。

写出式子 x 4 + a x 3 + b x 2 + c x + d = 0 {\displaystyle x^{4}+ax^{3}+bx^{2}+cx+d=0} ,令 y = x + a / 4 {\displaystyle y=x+a/4} ,把上式改写为 y 4 + e y 2 + f y + g = 0 {\displaystyle y^{4}+ey^{2}+fy+g=0} ,再利用系数 e , f , g {\displaystyle e,f,g} 造出另一式子: z 3 + ( e / 2 ) z 2 + ( ( e 2 4 g ) / 16 ) z f 2 / 64 = 0 {\displaystyle z^{3}+(e/2)z^{2}+((e^{2}-4g)/16)z-f^{2}/64=0} , 求出 z {\displaystyle z} 的三根,并用 p , q , r {\displaystyle p,q,r} 代表它们。那么 y {\displaystyle y} 的四个根就是 + p + q + r {\displaystyle +{\sqrt {p}}+{\sqrt {q}}+{\sqrt {r}}} + p q r {\displaystyle +{\sqrt {p}}-{\sqrt {q}}-{\sqrt {r}}} p + q r {\displaystyle -{\sqrt {p}}+{\sqrt {q}}-{\sqrt {r}}} p q + r {\displaystyle -{\sqrt {p}}-{\sqrt {q}}+{\sqrt {r}}}

合并来看二次方程根的样式为 j A {\displaystyle j{\sqrt {A}}} ,其中 j { h 0 , h 1 } ,                     h 2 = 1 {\displaystyle j\in \{h^{0},h^{1}\},\ \ \ \ \ \ \ \ \ \ h^{2}=1} 三次方程根的样式为 j 1 A 3 + j 2 B 3 {\displaystyle j_{1}{\sqrt{A}}+j_{2}{\sqrt{B}}} ,其中 j { h 0 , h 1 , h 2

相关

  • abbr class=abbr title=S37: 穿戴适合的手套S37/abbr安全建议标准词(英语:Safety phrases,简写:S-phrases)是于《欧盟指导标准67/548/EEC 附录Ⅳ: 有关危险物品与其储备的安全建议》里定义。该列表被集中并再出版于指导标准2001/59/
  • 空气门空气门(或称空气幕、风幕机、风闸、风门)是一种机械装置,一般装在门上,可将室内与室外的空气做隔绝,达到防止灰尘,节省冷气及防止蚊虫进入室内的效果。在超市、百货公司、政府部门
  • 坎特伯雷的安瑟莫安瑟莫(Anselm,1033年-1109年4月21日),又译安瑟伦,天主教译为安色莫,意大利中世纪哲学家、神学家,1093年至1109年任天主教坎特伯里总教区总主教。被尊称为最后一位教父与第一位经院
  • 坦桑尼亚华人华人,早在1891年已生活在坦桑尼亚。然而,该国大多数华人根植于三大不同的移民潮:20世纪30年代在桑给巴尔定居点,中华人民共和国政府在二十世纪六十年代和七十年代向坦桑尼亚提供
  • 南瓜属等。南瓜属(学名:)是葫芦目葫芦科的其中一属,当中最著名的物种是南瓜。在北美地区,常见的美洲南瓜种经常都被笼统的称作。
  • 鲁路修·兰佩洛基鲁路修·兰佩洛基(ルルーシュ・ランペルージ,Lelouch Lamperouge)是日本动画《Code Geass 反叛的鲁路修》中的主角。原为不列颠帝国第十七位继承人,但为了替妹妹娜娜莉创造幸福
  • 约瑟夫·布罗伊尔约瑟夫·布罗伊尔(Josef Breuer,1842年1月15日-1925年6月20日),一位在1880年代紧密地和西格蒙德·弗洛伊德一起工作的奥地利心理医生,并且企图以催眠来减轻病人的神经官能症。
  • 克拉斯米尔·鲍里索夫克拉斯米尔·鲍里索夫·乔尔杰夫(保加利亚语:Красимир Борисов Георгиев,英语:Krasimir Borisov Georgiev,1950年4月8日-),是前保加利亚足球选手,司职中场,曾
  • 重力与呼吸《重力与呼吸》(日语:重力と呼吸)是日本摇滚乐团Mr.Children的第19张专辑,于2018年10月3日发行。前张专辑《REFLECTION》后,隔了3年4个月后才发行。专辑名称也是继第5张专辑《深
  • 独立市 (俄勒冈州)独立市(Independence)是位在美国俄勒冈州波克郡的一座城市。根据美国人口调查局2000年统计,人口有6,035人。