电势能

✍ dations ◷ 2025-05-19 19:50:28 #能量形式,静电学,电学,电力,电压

在静电学里,电势能(Electric potential energy)是处于电场的电荷分布所具有的势能,与电荷分布在系统内部的组态有关。电势能的单位是焦耳。电势能与电势不同。电势定义为处于电场的电荷所具有的电势能每单位电荷。电势的单位是伏特。

电势能的数值不具有绝对意义,只具有相对意义。所以,必须先设定一个电势能为零的参考系统。当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远),都相对静止不动时,这物理系统通常可以设定为电势能等于零的参考系统。:§25-1假设一个物理系统里的每一个点电荷,从无穷远缓慢地被迁移到其所在位置,总共所做的机械功为 W {\displaystyle W} ,则这物理系统的电势能 U {\displaystyle U}

在这过程里,所涉及的机械功 W {\displaystyle W} ,不论是正值或负值,都是由这物理系统之外的机制赋予,并且,缓慢地被迁移的每一个点电荷,都不会获得任何动能。

如此计算电势能,并没有考虑到移动的路径,这是因为电场是保守场,电势能只跟初始位置与终止位置有关,与路径无关。

在一个物理系统内,计算一个点电荷所具有的电势能的方法,就是计算将这点电荷Q从无穷远位置迁移到其它固定位置电荷附近所需要做的机械功。而这计算只需要两项资料:

注意到这计算不需要知道其它电荷的电荷量,也不需要知道这点电荷Q所产生的电势。

只拥有单独一个点电荷的物理系统,其电势能为零,因为没有任何其它可以产生电场的源电荷,所以,将点电荷从无穷远移动至其最终位置,外机制不需要对它做任何机械功。特别注意,这点电荷有可能会与自己生成的电场发生作用。然而,由于在点电荷的位置,它自己生成的电场为无穷大,所以,在计算系统的有限总电势能之时,一般刻意不将这“自身能”纳入考量范围之内,以简化物理模型,方便计算。

思考两个点电荷所组成的物理系统。假设第一个点电荷 q 1 {\displaystyle q_{1}} 的位置为坐标系的原点 O {\displaystyle \mathbf {O} } ,则根据库仑定律,点电荷 q 1 {\displaystyle q_{1}} 施加于位置为 r {\displaystyle \mathbf {r} } 的第二个点电荷 q 2 {\displaystyle q_{2}} 的电场力为

其中, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数。

在迁移点电荷 q 2 {\displaystyle q_{2}} 时,为了要抗拒电场力,外机制必需施加作用力 F c {\displaystyle -\mathbf {F} _{c}} 于点电荷 q 2 {\displaystyle q_{2}} 。所以,机械功 W {\displaystyle W}

由于库仑力为保守力,机械功与积分路径 L {\displaystyle \mathbb {L} } 无关,所以,可以选择任意一条积分路径。在这里,最简单的路径为从无穷远位置朝着 r ^ {\displaystyle -{\hat {\mathbf {r} }}} 方向迁移至 r {\displaystyle \mathbf {r} } 位置的直线路径。那么,机械功为

这机械功是无穷远位置与 r {\displaystyle \mathbf {r} } 位置之间的静电能差别:

设定 U ( ) = 0 {\displaystyle U(\infty )=0} ,则

现在,假设两个点电荷的位置分别为 r 1 {\displaystyle \mathbf {r} _{1}} r 2 {\displaystyle \mathbf {r} _{2}} ,则电势能为

其中, r 12 = | r 2 r 1 | {\displaystyle r_{12}=|\mathbf {r} _{2}-\mathbf {r} _{1}|} 是两个点电荷之间的距离。

假设两个点电荷的正负性相异,则电势能为负值,两个点电荷会互相吸引;否则,电势能为正值,两个点电荷会互相排斥。

对于三个点电荷的系统,外机制将其每一个单独点电荷,一个接着一个,从无穷远位置迁移至最终位置,所需要做的机械功,就是整个系统的静势能。以方程表示,

其中, q 1 , q 2 , q 3 {\displaystyle q_{1},q_{2},q_{3}} 为点电荷, r i j {\displaystyle r_{ij}} 为第i个与第j个点电荷之间的距离。

按照这方法演算,对于多个点电荷的系统,按照顺序,从第一个点电荷到最后一个点电荷,各自缓慢迁移到最后对应位置。在第 i {\displaystyle i} 个点电荷 q i {\displaystyle q_{i}} 迁移时,只会感受到从第 1 {\displaystyle 1} 个点电荷到第 i 1 {\displaystyle i-1} 个点电荷的电场力,而机械功 W i {\displaystyle W_{i}} 是因为抗拒这些电场力而做出的贡献:

所有点电荷做出的总机械功(即总电势能)为

将每一个项目重复多计算一次,然后将总合除以 2 {\displaystyle 2} ,这公式也可以表达为,

这样,可以忽略点电荷的迁移顺序。

注意到除了点电荷 q i {\displaystyle q_{i}} 以外,所有其它点电荷产生的电势在位置 r i {\displaystyle \mathbf {r} _{i}}

所以,离散点电荷系统的总电势能为

对于连续电荷分布,前面的电势能方程变为

其中, ρ ( r ) {\displaystyle \rho (\mathbf {r} )} 是在源位置 r {\displaystyle \mathbf {r} } 的电荷密度, V {\displaystyle \mathbb {V} } 是积分体积。

应用高斯定律

其中, E {\displaystyle \mathbf {E} } 是电场。

电势能为

应用散度定理,可以得到

其中, S {\displaystyle \mathbb {S} } 是包住积分体积 V {\displaystyle \mathbb {V} } 的闭曲面。

当积分体积 V {\displaystyle \mathbb {V} } 趋向于无限大时,闭曲面 S {\displaystyle \mathbb {S} } 的面积趋向于以变率 r 2 {\displaystyle r^{2}} 递增,而电场、电势分别趋向于以变率 1 / r 2 {\displaystyle 1/r^{2}} 1 / r {\displaystyle 1/r} 递减,所以,上述方程右手边第一个面积分项目趋向于零,电势能变为

电场与电势的微分关系为

将这方程代入,电势能变为

所以,电势能密度 u {\displaystyle u}

前面分别推导出两个电势能方程:

注意到第一个方程计算得到的电势能,可以是正值,也可以是负值;但从第一个方程推导出来的第二个方程,其计算得到的电势能则必定是正值。为什么会发生这不一致问题?原因是第一个方程只囊括了电荷与电荷之间的相互作用能;而第二个方程在推导过程中,无可避免地将电荷的自身能也包括在内。在推导第一个方程时,在位置 r i {\displaystyle \mathbf {r} _{i}} 的电势乃是,除了 q i {\displaystyle q_{i}} 以外,所有其它电荷共同贡献出的电势;而在推导第二个方程时,电势乃是所有电荷共同贡献出的电势。

举一个双点电荷案例,假设电荷 q 1 {\displaystyle q_{1}} q 2 {\displaystyle q_{2}} 的位置分别为 r 1 {\displaystyle \mathbf {r} _{1}} r 2 {\displaystyle \mathbf {r} _{2}} ,则在任意位置 r {\displaystyle \mathbf {r} } 的电场为

其电势能密度为

很明显地,这方程右手边的前两个项目分别为电荷 q 1 {\displaystyle q_{1}} q 2 {\displaystyle q_{2}} 的自身能密度 ϵ 0 E 1 2 / 2 {\displaystyle \epsilon _{0}E_{1}\,^{2}/2} ϵ 0 E 2 2 / 2 {\displaystyle \epsilon _{0}E_{2}\,^{2}/2} 。最后一个项目是否为相互作用能密度?为了回答这有意思的问题,继续计算相互作用能密度的体积积分:

应用一条矢量恒等式,

可以得到

应用散度定理,可以将这方程右手边第一个项目,从体积积分变为面积积分:

其中, S {\displaystyle \mathbb {S} } 是包住积分体积 V {\displaystyle \mathbb {V} } 的闭曲面。

假设 V {\displaystyle \mathbb {V} } 趋向于无穷大空间,则这面积积分趋向于零。再应用一则关于狄拉克δ函数的矢量恒等式

可以得到

这正是双点电荷系统的电势能。

相关

  • 高尔加斯高尔吉亚(希腊文:Γοργίας,约公元前487年-前376年),希腊诡辩学派学者、前苏格拉底时期的哲学家及修辞学家,原居于西西里伦蒂尼。与普罗塔哥拉同为首批诡辩学者。他最为人所
  • 陈 彪陈彪(1923年11月23日-?),福建螺洲人,出生于北京,中国天文学家,中国科学院院士。陈彪出生于螺洲陈氏家族,其父为公路专家陈体诚。他于1941年考入国立西南联合大学土木工程系。次年转入
  • 卡诺定理卡诺定理是热力学中的一个定理,说明热机的最大热效率只和其高温热源和低温热源的温度有关。此定理以尼古拉·卡诺为名。根据卡诺定理,则依卡诺定理可得到一热机的最大热效率
  • 红细胞比容血细胞比容(德语:Hämatokrit,英语:hematocrit 源于希腊语:αιματοκρίτης,简写 HCT / Ht)又称血比容、红血球容积比、血容比,旧名红细胞压积(packed cell volume,简写PCV)指
  • 环境地质学环境地质学是环境科学的一个分支,研究人类和地理环境之间的关系,尤其侧重于研究人类活动对地理环境的影响。环境地质学研究包括:环境地质学的研究要运用地球化学和矿物学的方法
  • 禾本科禾本科(学名:Poaceae),是被子植物中次于菊科、兰科、豆科、茜草科的第五大科,单子叶植物中次于兰科的第二大科。主要包括稻亚科、竹亚科、早熟禾亚科等12个亚科和少数不确定类群
  • 美国退伍军人事务部长美国退伍军人事务部长是美国退伍军人事务部的主管,它在美国内阁中排名第17位。当美国退伍军人事务部长空缺时,由美国退伍军人事务部副部长接替,直到总统任命新部长为止,现任部长
  • B集团军群B集团军群(德语:Heeresgruppe B)是第二次世界大战中,纳粹德国德国国防军下的一个集团军群。B集团军群参加过进攻西线的行动,担任占领荷兰和比利时的角色,并引诱盟军主力部队进入比
  • 米哈伊·菲福尔米哈伊-维奥雷尔·菲福尔(Mihai-Viorel Fifor,1970年10月-),罗马尼亚政治人物。生于塞维林,1989年进入克拉约瓦大学。于1994年取得罗马尼亚语和英语学位。第二年在同一大学获罗马
  • 与谢野馨与谢野 馨(1938年8月22日-2017年5月21日),日本政治家,曾任财务大臣。与谢野出生于东京都千代田区,1963年毕业于东京大学法学部政治课程,后在中曾根康弘的介绍下进入日本原子能发电