关系 (数学)

✍ dations ◷ 2025-11-26 22:44:15 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 显生宙显生宙(Phanerozoic),或称显生元、显生代,是5.41亿年前大量生物出现的时期。显生宙即意为这个时期地球上有显著的生物出现。而那些看不到或者很难见到生物的时代统称为隐生元或
  • 头孢他啶头孢他啶是第三代的头孢菌素抗生素。与其他第三代的先锋霉素相似,有着较广泛的反应对抗革兰氏阳性菌及革兰氏阴性菌。不同的是,它能有效对抗绿脓杆菌,却对革兰氏阳性菌的抗力较
  • 老普林尼盖乌斯·普林尼·塞孔杜斯(拉丁语:Gaius Plinius Secundus,23年-79年8月24日),常称为老普林尼或大普林尼,古罗马作家、博物学者、军人、政治家,以《自然史》(一译《博物志》)一书留名
  • 梳霉亚门Asellariales Dimargaritales Harpellales Kickxellales梳霉亚门(Kickxellomycotina)是真菌的一个分支。梳霉亚门的拉丁文名称是由“Harpellomycotina”更正而成,因为“Kickxel
  • 场致发射电子场致发射,简称场发(Field electron emission,field emission (FE))理论最早是在1928年由拉尔夫·福勒与罗特哈·诺德海姆(英语:Lothar Nordheim)共同提出,其原理当在两导电体间
  • 苯并环丁二烯苯并环丁二烯(Benzocyclobutadiene)是一种多环芳烃,结构上由苯环与环丁二烯稠合而成,化学式C8H6。因其有一个反芳香性的环丁二烯结构而很不稳定,很容易二聚或多聚,并且在D-A反应中
  • 陆丰陆丰市是中国广东省汕尾市下辖的县级市,位于碣石湾畔,北接陆河县、普宁市,东接惠来县,西接海丰县和汕尾市城区。陆丰市北面和陆河县、普宁市交界;东与汕尾市华侨管理区及惠来县接
  • ICD-10ICD-10 第五章:精神和行为障碍(英语:ICD-10 Chapter V: Mental and behavioural disorders#(F10–F19) Mental and behavioural disorders),为世界卫生组织发布的、ICD-10规定的
  • 齐鲁文化齐鲁文化,又称海岱文化,是指以今中国山东省为中心形成和发展的一种地域文化。齐鲁文化区以泰沂山脉为中心,其范围大致包括今日的山东省京杭大运河以东地区、江苏省北部、辽东半
  • ATC代码 (D)ATC代码D(皮肤科用药)是解剖学治疗学及化学分类系统的一个分类,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborating Centre for Drug Statistics Methodology)所制定