关系 (数学)

✍ dations ◷ 2025-04-04 04:53:01 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 毒素本文所指的毒素(英语:Toxin),是指生物体所生产出来的毒物(poison),这个术语最早是由有机化学家路德维希(Ludwig Brieger)所提出。这些物质通常是一些会干扰生物体中其他大分子作用的
  • 肉毒杆菌肉毒杆菌(学名:Clostridium botulinum)是一种生长在常温、低酸和缺氧环境中的革兰氏阳性杆菌,有卵形至长杆形的孢子型态,属次末端或末端的孢子生成方式。肉毒杆菌在不正确加工、
  • 黄斑水肿黄斑水肿是一种发生在眼睛内的黄斑后面的视网膜水肿,一般来说,水肿是由一些液体和蛋白质造成有关部位的增厚和膨胀。肿胀可能会扭曲一个人的中央视力,因为黄斑是眼球中心附近的
  • 单磷酸尿苷单磷酸尿苷(英语:Uridine monophosphate,或译一磷酸尿苷、尿苷单磷酸、尿苷酸,英文缩写UMP)。是一种存在于RNA中的核苷酸。也是一种由磷酸与核苷尿苷所组成的酯类。包含磷酸官能
  • 兰格汉氏细胞朗格汉斯细胞(又称兰氏细胞)是在皮肤和黏膜的树状细胞(抗原呈递细胞),其中含有称作伯贝克颗粒(英语:Birbeck granules)的胞器,在上皮中的任何一层都有朗格汉斯细胞,不过主要是在棘状
  • 打印机打印机是电脑输出设备的一种,可以将电脑内储存的资料按照文字或影像的方式永久的输出到纸张、透明胶片或其他平面媒介上。单色打印机只能包含一种颜色的图片,通常是黑色,有些单
  • 塞浦路斯中央银行塞浦路斯中央银行(希腊语:Kεντρική Τράπεζα της Κύπρου;土耳其语:Kıbrıs Merkez Bankası),是塞浦路斯共和国的中央银行,位于首都尼科西亚,成语于1963年,在
  • 金沙镇金沙镇可以指:
  • 真理永恒真理永恒(梵语:सत्याग्रह,Satyāgraha,英语:Satyagraha),字面意思为坚持真理,由梵文satya(真理)与 agraha(坚持)所组成的复合字,起源自印度教。它是非暴力抵抗与公民抵抗运动之
  • 良性阵发性姿势性眩晕良性阵发性姿势性眩晕(Benign paroxysmal positional vertigo,简称BPPV)为一种内耳诱发的疾病,患者会有重复性短暂眩晕的症状,头部移动时会感到天旋地转,甚至连就寝翻身时都会有晕