关系 (数学)

✍ dations ◷ 2025-11-28 23:31:53 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 神经内科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经内科(neurology)是医学的一个分支,专
  • 232.0377(4)6d2 7s22, 8, 18, 32, 18, 10, 2蒸气压第一:587 kJ·mol−1 第二:1110 kJ·mol−1 第三:1930 kJ·mol主条目:钍的同位素.mw-parser-output ruby>rt,.mw-parser-o
  • Doctors《Doctors》(韩语:닥터스)为韩国SBS于2016年6月20日起播出的月火连续剧,由朴信惠及金来沅主演,《温暖的一句话》、《上流社会》河明熙作家执笔,以女流氓刘慧静(朴信惠 饰)为主角,讲述
  • span class=nowrapCeClsub3/sub/span三氯化铈,别名氯化铈、氯化铈(III),化学式CeCl3。无色易潮解块状结晶或粉末。露置于潮湿空气中时,迅速吸收水分生成组成不定的水合物。易溶于水,可溶于乙醇和丙酮。水合物直接在
  • 哈布历玛雅历是一套以不同历法与年鉴所组成的系统,为前哥伦布时期中部美洲的玛雅文明所使用。现仍使用于墨西哥的瓦哈卡州、恰帕斯州、韦拉克鲁斯州以及危地马拉高地的玛雅社群中。
  • 朱仙镇朱仙镇,位于河南省祥符区西南,贾鲁河穿镇而过,古时,水路转淮河可远达扬州,自唐代至民国时期,该镇乃为水陆交通要地,岳飞大败金兵于郾城,进军至此。清时与景德、汉口、佛山并称四大镇
  • 低地国低地国家(荷兰语:de Nederlanden,法语:les Pays-Bas),又译低地诸国(英语:Low Countries),是对欧洲西北沿海地区的称呼,广义包括荷兰、比利时、卢森堡,以及法国北部与德国西部;狭义上则仅
  • 麝雉目麝雉(学名:Opisthocomus hoazin)是热带的一种鸟类,生活在南美洲亚马逊盆地及奥利诺科河三角洲的沼泽、森林及红树林。它们是麝雉属下的唯一物种,而麝雉属则是麝雉科下的唯一属。
  • 秦皇岛市秦皇岛市市标秦皇岛市,简称秦,旧称临榆,是中华人民共和国河北省下辖的地级市,位于河北省东北部,市境西南界唐山市,西北接承德市,东北临辽宁省朝阳市、葫芦岛市,东南滨渤海湾。地处燕
  • 尿素氮尿素氮(英文:Blood urea nitrogen,缩写:BUN),是蛋白质经过消化作用分解后所产生的代谢产物经过尿素循环在肝脏中转换为尿素。一般人的血清尿素氮正常值为每100ml血液中含7~21 mg(7