关系 (数学)

✍ dations ◷ 2025-06-28 21:43:52 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • NSK萨格勒布国家和大学图书馆(克罗地亚语:Nacionalna i sveučilišna knjižnica u Zagrebu,原称Nacionalna i sveučilišna biblioteka u Zagrebu)是克罗地亚的国家图书馆,也是萨
  • 新零售新零售是由阿里巴巴集团前董事长马云在2016年阿里巴巴集团云栖大会上提出的一个理论,该理论的核心是“(自当年)未来10年20年之后没有电子商务只有新零售”。所谓新零售是指以消
  • 双倒数图双倒数图也称为莱恩威弗-伯克作图,是生物化学用来描述酶动力学的莱恩威弗-伯克方程的图示法,由汉斯·莱恩威弗(英语:Hans Lineweaver)和迪恩·伯克(英语:Dean Burk)于1934年提出。双
  • 英国宇航署name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • 丹麦城市列表以下为主要丹麦城市列表:1 = 所有人口超过20,000的城市 2 = Ølstykke-Stenløse is a new city, created by conurbation between Ølstykke and Stenløse on 2010-01-01.
  • 飞思卡尔飞思卡尔(英语:Freescale Semiconductor)是美国的半导体生产厂商。飞思卡尔于2004年由原摩托罗拉的半导体部门组建。摩托罗拉于2003年10月宣布剥离半导体部门,第二年7月,飞思卡尔
  • 输精管切除术后疼痛综合征输精管切除术后疼痛综合症(Post-vasectomy pain syndrome,P.V.P.S)是在输精管切除术(男性结扎)之后的慢性生殖器疼痛症状,可能在切除后立刻有症状,也可能在结扎后几年内才有症状。
  • 本州坐标:36°N 138°E / 36°N 138°E / 36; 138本州(日语:本州/ほんしゅう Honshū */?, 发音 帮助·信息)是日本最大岛,也是日本本土四岛之一,位于日本列岛中部,向北与北海道岛隔津
  • 阿勒颇大清真寺阿勒颇大清真寺(阿拉伯语:جامع حلب الكبير‎),又名阿勒颇倭马亚清真寺(阿拉伯语:جامع بني أمية بحلب‎),是叙利亚第一大城市阿勒颇主要的清真寺,位于阿
  • 抑癌蛋白Mn/an/an/an/an/an/an/an/an/an/a抑癌蛋白M(英语:Oncostatin M,缩写OSM,也译作制癌蛋白M、抑瘤素M)是由人类基因 编码的蛋白质,由209个氨基酸残基组成。OSM是一种多效的细胞因子,属