关系 (数学)

✍ dations ◷ 2025-11-22 08:08:34 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 联合国社会发展研究所联合国社会发展研究所(United Nations Research Institute For Social Development,UNRISD)是联合国系统下的独立研究机构,主要从事当代发展议题之社会跨领域研究,创立于1963年,总
  • 国家列表以下是位于北美洲的国家及海外领土列表,当中包括名称、国旗、首都、货币、官方语言、面积 、人口、国内生产总值(GDP)、人均国内生产总值(PPP)以及地图 。(属地以浅蓝色背景显示)北
  • 直觉主义逻辑直觉主义逻辑或构造性逻辑是最初由阿兰德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真
  • 美国医学协会美国医学会(American Medical Association,缩写AMA),成立于1847年,1897年成为法人 ,为美国最大的医生组织。总部位于芝加哥。会员人数超过21万(2010年)。 组织代表美国医生(M.D. 和 D
  • Hemimastigophora半鞭毛虫(Hemimastigophora)是一类单细胞真核生物,目前认为此支序为多貌生物的姊妹群。本支序于1988年由Foissner等人建立的一个门级分类元,其下仅有Spironemidae一科。当时该支
  • 新型流行性感冒等对策特别措置法新型流行性感冒等对策特别措置法(日语:新型インフルエンザ等対策特別措置法/しんがたインフルエンザとうたいさくとくべつそちほう,平成24年法律第31号)是日本的法律,旨在透过强化
  • 月球探测器本表尽量彻底地记录世界各国的航太工程中,有史以来以探测月球为目的而发射出的探测器的简略概况。台湾国家中山科学研究院与国家太空中心
  • Phaeophyceae褐藻(学名:Phaeophyceae)是属较高等的多细胞藻类,属真核细胞生物,有1,500种左右,主要分布于大陆附近的水域,则淡水种罕见。褐藻纲外表从暗褐色的橄榄绿都有,其取决于褐藻素与叶绿素
  • 纬来综合台纬来综合台,即前纬来电视 ON TV,是纬来电视网旗下结合综艺节目、谈话性节目、电视动画等不同类型节目于一台的综合性频道,也会重播纬来戏剧台的戏剧节目。在纬来体育台与纬来育
  • 小齿狸属小齿狸(学名:Arctogalidia trivirgata)为灵猫科小齿狸属的动物。分布于印度尼西亚、中南半岛、印度(阿萨姆)、缅甸以及中国大陆的云南等地。该物种的模式产地在马六甲。小齿狸包