关系 (数学)

✍ dations ◷ 2025-11-09 09:06:18 #集合论基本概念,数学关系

在数学上,关系是对如等于 或序等二元关系的广义化。

参考一个如“认为喜欢”之类的关系,其实际情形如下:


上表的每一行都代表着一个事实,并给出“认为喜欢”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合上的关系,其中:

包括表中所有的人物。表中的资料则等同于如下的有序对:

若较不严谨些,通常会将(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。

元关系在数学上有两种常见的定义。

定义1在集合1,…,上的关系是指集合的笛卡儿积的子集,写成 ⊆ 1 ×…× 。因此,在此定义下,元关系就是个元组的集合。

第二个定义用到数学上一个常见的习惯-说“某某为一元组”即表示此一某某数学物件是由组数学物件的描述来判定的。在于集合上的关系中,会有+1件事要描述,即个集合加上一个这些集合笛卡儿积的子集。在此习惯下,可以说是一个+1元组。

定义2在集合1,…,上的关系是一个+1元组 = (1,…, , ()),其中()是笛卡儿积1 ×…× 的子集,称之为的“关系图”。

两个正整数和之间“可除性”的关系是指“ 整除”。此一关系通常用一特殊的符号“ | ”来表示它,写成“|”来表示“整除”。

若要以集合来代表这二元关系,即是设正整数的集合 = {1,2,3,…},然后可除性就是一个在上的二元关系,其中为一包含了所有|的有序对 (,)。

例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或(2,4)和(6,72)。

对三维空间内的线,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。

换句话说,若 (,,)表示线 ,,共面,且(,)表示线 ,共面,则(,),(,)和(,)不能合起来代表(,,)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。

第一个是,如轴、轴和轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。

若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。

数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。

具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。

具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。

n元谓词就是含有n个变量的布尔值函数。

由于上述的n元关系定义了 (1, ..., )属于时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:

许多事物有多个元素两两关系。例如:

1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;

2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 变形虫变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • 去甲肾上腺素-多巴胺再吸收抑制剂去甲肾上腺素-多巴胺再吸收抑制剂(NDRI)是一种借由阻挡多巴胺转运体(DAT)及去甲肾上腺素转运体(NET)而达成作用的再吸收抑制剂。 它可使细胞膜外的多巴胺及去甲肾上腺素浓度增加,达
  • 菊科白粉菌菊科白粉菌(学名:Erysiphe cichoracearum)是属于白粉菌目白粉菌科白粉菌属的一种真菌,寄生在菊科植物上。该种分布于全世界。
  • 中部非洲国家经济共同体中部非洲国家经济共同体(英语:Economic Community of Central African States,简称ECCAS、法语:Communauté économique des États de l'Afrique Centrale,简称CEEAC、葡语:Comu
  • 胆甾烷(1S,2S,10R,11S,14R,15R)-2,15-二甲基-14-四环十七烷胆甾烷(英语:Cholestane)是一种饱和的四环三萜化合物,是胆固醇成岩作用产生的主要C-27生物标记,在岩石记录中最为丰富。在石
  • 凯维里理论物理研究所坐标:34°24′50.29″N 119°50′27.36″W / 34.4139694°N 119.8409333°W / 34.4139694; -119.8409333科维理理论物理研究所(Kavli Institute for Theoretical Physics,简称:K
  • 右江壮语右江壮语是壮语的一种,属北部台语支(英语:Northern Tai languages),通行于中国广西壮族自治区的田东、田阳、百色一带,使用人数大约有90万人左右。
  • 龙岗大道龙岗大道是中国广东省深圳市龙岗区一条东西向主干道,公路技术等级为一级公路,双向行车线8至10条,从草埔地铁站经布吉街道、横岗街道、龙城街道、龙岗街道、坪地街道到惠州市交
  • 马律马累(迪维希语:މާލެ‎‎;/ˈmɑːleɪ/, 当地发音.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","
  • 赣江赣江是长江的第7大支流,江西的最大河流,南北纵贯江西省。全长991千米,其中干流长751千米,流域面积8.35万平方千米。赣,古代亦写作灨,又通淦。先秦时赣江被称为杨汉,汉代称湖汉,赣水