可定向性

✍ dations ◷ 2024-12-23 03:45:59 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 气压气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的重力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、
  • 德国驻日大使馆德国驻日大使馆(德语:Deutsche Botschaft Tokyo、日语:駐日ドイツ大使館),是德意志联邦共和国对日本国设置的外交代表机构,亦为德国规模最大的驻外使馆之一,馆址位于东京港区的南麻
  • Balenciaga巴黎世家(西班牙语:Balenciaga,西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000"
  • 纳粹集中营臂章纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 箭石箭石类动物(学名:Belemnoidea),旧作箭石下纲,是一个已灭绝头足纲生物的分支,生活在泥盆纪至白垩纪之间。箭石在许多方面都与现代的鱿鱼相当接近,而且与现代的乌贼关系密切。箭石也
  • 水煤气水煤气(英语:Syngas/synthesis gas)一般指一氧化碳与氢气混合的燃料气体(有时亦包含些许二氧化碳),一般为气化反应的产物,主要用途为发电。合成气是可燃的,并经常被用来作为内燃机的
  • 梅登黑德坐标:51°31′18″N 0°43′04″W / 51.5217°N 0.7177°W / 51.5217; -0.7177梅登黑德(Maidenhead)是一个位于英国伯克郡的镇和非教区地,处在泰晤士河南岸。距离查令十字以西25
  • 沃沃尼岛沃沃尼岛是印度尼西亚东南苏拉威西省的岛屿,位于苏拉威西岛东南面的班达海,南面有布顿岛,岛屿面积715平方公里,拥有来自海洋和森林的天然资源。行政上归属科纳韦群岛县。
  • 原住民族广播电台原住民族广播电台(Alian 96.3),为原住民族文化事业基金会所经营的广播电台,是台湾第一个以台湾原住民族为主的广播电台。简称原广。该台接手原本中广音乐网的频率,于2017年8月9日
  • 亲电芳香取代亲电芳香取代反应是指芳香环系上的取代基(通常是氢原子)被亲电试剂取代的反应。该反应中最重要的类型包括芳香环系的硝化反应、卤代反应、磺化反应以及傅-克反应。本节所举例