可定向性

✍ dations ◷ 2025-05-17 19:41:17 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • ICD-9编码列表 (290–319)这是ICD码290–319列表:精神疾病。出处为国际疾病与相关健康问题统计分类第九版(ICD-9, 1977)。本列表基于1975年第九次修改会议作出的建议和第二十九届世界卫生大会的认可。Te
  • 活性化学中,活性(Activity)即某物质的“有效浓度”,或称为物质的“有效莫尔分率”。此概念由吉尔伯特·牛顿·路易斯首先提出。将理想混合物中组分i的化学势表示式中的莫尔分率(xi)替
  • 星系际航行星系际旅行是在星系间的空间旅行。 由于在银河系和最近的星系之间都有相对无比巨大的距离,这样的旅行需要的技术远远超过恒星际旅行。 星系间的距离是恒星间距的大约一百万倍
  • 日柱光柱是一个由与水平面接近平行的冰晶体反射光创造的一种视觉现象。当光来自太阳(通常在低于地平线)的情况下,这种现象被称为日柱。它也可以来自月球或陆地,如街灯。光柱是地球大
  • 键长键长是两个成键原子A和B的平衡核间距离。它是了解分子结构的基本构型参数,也是了解化学键强弱和性质的参数。对于由相同的A和B两个原子组成的化学键:键长值小,键强;键的数目多,键
  • 耐火砖耐火砖,又称火砖,是由耐热陶瓷材料制作的砖,形状跟普通建筑用砖类似,因此常用于建筑窑炉和各种热工设备。耐火砖一方面在高温下不会有化学变化,一般也是热传导较差的材料。通常致
  • 中央省厅再编中央省厅再编(日语:中央省庁再編/ちゅうおうしょうちょうさいへん Chūō Shōchō Saihen)指的是日本国中央省厅的机能与组织的再统合,一般特指日本政府于2001年(平成13年)1月6日
  • 亚历山大一世岛亚历山大一世岛(英语:Alexander I Island),亦称亚历山大岛(Alexander Island),南极洲沿岸一岛屿,位于南极半岛以西的别林斯高晋海中,面积43250平方公里,是世界第二大无人岛。俄罗斯帝
  • 倪妮倪妮(1988年8月8日-),生于中国大陆南京,女演员,于2011年毕业于中国传媒大学南广学院语言传播系。因在张艺谋导演的电影《金陵十三钗》中饰演女主角“玉墨”而一举成名。倪妮于小学
  • 冲水马桶抽水马桶,又称冲水马桶,约翰·哈林顿(Dr. John Harington)被认为是第一个发明抽水马桶的人,1778年由约瑟夫·布拉梅(英语:Joseph Bramah)发明,是以杠杆原理把定量水由水箱拉下,把排泄