可定向性

✍ dations ◷ 2025-12-03 05:54:36 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 实习生实习,是学生到企业、政府部门或其他组织等进行实践的一个过程,目的是为以后的工作做好准备。实习生通常是在校大学生,但是也有一些高中生或者研究生。实习为想要在各自领域获得
  • 亲水性亲水性指分子能够透过氢键和水分子形成短暂键结的物理性质。因为热力学上合适,这种分子不只可以溶解在水里,也可以溶解在其他的极性溶液内。一个亲水性分子,或说分子的亲水性部
  • 超声造影成像超声造影成像是超声造影剂在传统超声成像中的应用。超声造影剂靠声波在不同介质的交界面反射的方式不同来增强对比。这种交界面可以是小气泡的表面,或者其它更加复杂的结构。
  • 升糖素1BH0, 1D0R, 1NAU, 2G49, 3IOL· hormone activity· extracellular region · extracellular space · soluble fraction · cytoplasm · plasma membrane· signal t
  • 四词谬误四词谬误(英语:fallacy of four terms;拉丁语:quaternio terminorum)是一种形式谬误,系因三段论含有四个以上的词项,导致论证无效。传统的三段论只牵涉三个词项,如以下论证包含了三
  • 马德堡半球实验马德堡半球(德语:Magdeburger Halbkugeln),亦作马格德堡半球,是一对铜质空心半球,被用于1654年由德国物理学家、时任马德堡市长奥托·冯·居里克于神圣罗马帝国的雷根斯堡(今德国雷
  • 寒热辨证寒热辨证,中医术语,系八纲辨证(指阴阳、表里、寒热、虚实八类证候,为中医辨证学的基本纲领)的具体内容之一。八纲辨证的特点在于把握疾病发生发展过程的整体性、确定性与相关性。
  • 81年
  • 大银鱼大银鱼(学名:Protosalanx chinensis)为辐鳍鱼纲胡瓜鱼目银鱼科大银鱼属的鱼类。分布于日本、朝鲜以及东海、黄海和渤海沿岸以及通海江河及其附属湖泊等海域,属于咸淡水鱼类,体长
  • 2019冠状病毒病根西岛疫情2019冠状病毒病根西岛疫情,介绍在2019新型冠状病毒疫情中,在根西岛发生的情况。2020年3月9日,根西岛确诊首例新冠肺炎病例,患者有特内里费岛旅行史。3月20日,报告第2例确诊病例。