可定向性

✍ dations ◷ 2025-11-16 01:25:28 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 琼脂培养皿琼脂平板(英语:Agar Plate)是一种把消毒后的培养基加上繁殖微生物所需材料(通常是洋菜及养分)后制成的有盖培养皿。由于提供了微生物繁殖的有利条件,琼脂平板能够用来种出不同的微
  • 拜耳药品拜耳股份公司(Bayer AG /ˈbaɪər/; 德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2
  • SNAC社交网络及存档内容(SNAC)是发现、定位和运用分布式信史的在线平台。它是由设在美国的一些组织合作发起的。SNAC的主要工作为“从对人的描述中分隔出人创造和记录人生活和工作
  • 解剖学治疗学及化学分类系统解剖学治疗学及化学分类系统(英语:Anatomical Therapeutic Chemical Classification System, ATC),是世界卫生组织对药品的官方分类系统。ATC系统由世界卫生组织药物统计方法整
  • 胚芽胚芽是植物种子胚的一部分,由生长点和幼叶组成,与胚茎和胚根共同构成胚轴。胚芽位于胚轴的上端,当种子发芽出土后,将继续发育成产生植物的茎、枝和叶片等构造。禾本科植物种子
  • 瑞典计算机科学研究所瑞典计算机科学研究所(英语:Swedish Institute of Computer Science,SICS),非盈利独立研究机构,以计算机科学研究为主。位于瑞典斯德哥尔摩希斯塔,由瑞典政府与瑞典工业界共同出资,
  • 投弹手甲虫放屁虫是约500种甲虫的统称,属于步行虫科的昆虫,可分为气步甲亚科等于整个气步甲族(Brachinini)以及Paussinae亚科中的Paussni族、Ozaenini族、Metriini族等四个族。它们有个共
  • 1996年阿瑟港枪击案阴谋论亚瑟港枪击案于1996年4月28日发生于澳大利亚塔斯曼尼亚州的旅游胜地亚瑟港 。28岁、无业的马丁·布莱恩(Martin Bryant)持数挺半自动步枪和冲锋枪冲入当地著名的黑箭咖啡厅(Bro
  • 非洲林狸属非洲林狸属(学名:Poiana)是食肉目灵猫科的一属,分布于非洲,现存2种:
  • 嵩阳书院嵩阳书院,是宋代四大书院之一,在河南嵩山南麓,今登封市北约三公里处,北依嵩山主峰峻极峰,南对双溪河。是河南省省级重点文物。最早为佛教、道教庙宇,宋代成为儒家书院。儒家理学大