可定向性

✍ dations ◷ 2025-11-18 15:01:22 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 中频电疗中频电疗(Middle frequency electrotherapy)是属于物理治疗中电刺激治疗方法的一种。由于这种治疗的方法使用的是频率介于1kHz至10kHz的干扰电流刺激,故命名为中频电疗。由于治
  • 川崎病川崎氏病(英语:Kawasaki disease),又称为川崎病或黏膜皮肤淋巴腺综合征(英语:mucocutaneous lymph node syndrome),是一种全身血管发炎的疾病。最常见的症状为无法用常规药物治疗的
  • 议会意大利议会(意大利语:Parlamento Italiano)是意大利的最高立法机构。意大利议会为两院制,由参议院、众议院组成。两院职能相同、权力均等。参议院议员315人;众议院议员630人,合共9
  • 多环胺类多环胺类(heterocyclic amines,简称 HCA 或 HCAs),也有人称之为杂环胺,常见的多环胺类有PhIP、IQ、MeIQx和3,8-diMeIQx,这些多环胺类已被科学家证明了对人体是有致癌性与致突变性的
  • 私塾私塾,也叫私学 、私塾,或学堂,是古中国的私立学校或补习班,流行于受儒家影响的文化圈。私塾大多由读书人、秀才等私人开办,由教书者(称为塾师)在自宅设立,入学者多系六岁至八岁孩童
  • 伊索科族乌尔霍博族居住在尼日利亚南部尼日尔河三角洲附近,是三角州的主要民族,由20个支族组成,人数约100万,他们使用乌尔霍博语沟通。
  • 布城布城(/pʊtrɑːdʒɑːjə/,英语和马来语:Putrajaya,全称:“布城联邦直辖区”)原名“Prang Besar”,旧译“布特拉再也”和“太子城”,是政府建立的新市镇,也是马来西亚的行政首都,是
  • 异担子菌纲异担子菌亚纲(Heterobasidiomycetes)或胶质菌(jelly fungi),是真菌下属担子菌门的一类。异担子菌亚纲的真菌其担子中有分隔,所以也为称为有隔担子亚纲。此纲包括常见的“黑木耳”
  • 伊萨亚斯·阿费沃尔基伊萨亚斯·阿费沃基(提格雷尼亚语:ኢሳይያስ ኣፈወርቂ,1946年2月2日-)是厄立特里亚的开国元首暨独裁者、厄立特里亚总统、人民民主与正义阵线中央委员会主席。1991年5月,阿费沃
  • 华盛顿杜勒斯国际机场华盛顿杜勒斯国际机场(英语:Washington Dulles International Airport,IATA代码:IAD;ICAO代码:KIAD;FAA代码:IAD)位于美国维珍尼亚州,得名于美国国务卿约翰·福斯特·杜勒斯,主航站楼由