可定向性

✍ dations ◷ 2025-07-27 18:28:45 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 核酮糖核酮糖(英语:ribulose)按结构上分类属于戊糖与酮糖。其所对应的醛糖是核糖,核酮糖的衍生物核酮糖-5-磷酸以及核酮糖-1,5-二磷酸在植物光合作用的暗反应中占有重要地位。果聚糖:菊
  • 布尔代数&    ∨    ¬    ~    →    ⊃    ≡    |    ∀    ∃    ⊤    ⊥    ⊢    ⊨    ∴    ∵
  • 乳腺发育乳腺发育主要是在出生后,在青春期时,女性乳腺中会形成小管及分支,这建立了从乳头开始,类似树的网络。在发育时,乳腺上皮细胞持续的产生,由少见的上皮细胞维护,配成了乳腺祖(mammary
  • 沃克县沃克县(Walker County, Georgia)是美国乔治亚州西北部的一个县,北邻田纳西州,西南邻阿拉巴马州。面积1,158平方公里。根据美国2000年人口普查,共有人口61,053人,2005年人口63,890
  • 兰氏结兰氏结(英语:Nodes of Ranvier)又名郎氏结,郎飞氏结。是神经元的一部分,以首位描述该结构的法国科学家兰维尔(Louis-Antoine Ranvier)为名。神经元的髓鞘包覆着轴突,兰氏结是神经元
  • 知床知床国立公园为日本北海道知床半岛上的国立公园,面积38,633公顷。于1964年6月1日成为国立公园。范围跨越斜里郡斜里町和目梨郡罗臼町,茂密的原生林覆盖了多数区域,并有野生动物
  • 菲林试剂斐林试剂(Fehling's reagent),也称斐林试液、菲林试剂,是一个常用的分析化学试剂。公元1849年由德国化学家赫尔曼·冯·斐林(英语:Hermann von Fehling)制作出来。斐林试剂可以用来
  • 朝鲜共产党已消亡已放弃共产主义意识形态已消亡已放弃共产主义意识形态已消亡已放弃共产主义意识形态已消亡已消亡已放弃共产主义意识形态朝鲜共产党(朝鲜语:조선 공산당)是朝鲜半岛历史
  • 张栻张栻(1133年-1180年),南宋时理学学者。字敬甫,号南轩,汉州绵竹县(今属四川省)人,仕至右文殿修撰。丞相张浚(1097—1164)之子。张浚之子。张栻用功早慧,博学多才,南宋高宗绍兴七年(1137年)张
  • 吴其濬吴其濬(1789年-1847年),字季深,一字瀹斋,号吉兰。河南固始县人。清代状元、政治人物、植物学家。他是清代河南省唯一的状元。生于乾隆五十四年(1789年),嘉庆二十二年(1817年)状元,授翰林