可定向性

✍ dations ◷ 2025-02-01 01:39:00 #微分几何,曲面

欧几里得空间R3中一个曲面是可定向(orientable)的如果一个二维图形(比如与单位区间的乘积到曲面的连续函数 f : B × S {\displaystyle f:B\times \to S} (,)=(,)当且仅当=对任何 ∈ ,并存在一个反射映射使得(b,0) = ((),1)对每个 ∈ 。

一个抽象曲面(即一个二维流形)可定向如果在曲面上连续存在一个一致的逆时针方向旋转概念。这等价于问平面是否包含一个子集同胚于莫比乌斯带。从而对曲面来说,莫比乌斯带可认为是所有不可定向性之来源。

嵌入在R3中的曲面在-流形,但这种方式出现了问题:有些4-流形没有三角剖分,而一般地对 > 4某些有三角剖分的-流形是不等价的。

一个-维流形(不论是嵌入在有限维向量空间,还是一个抽象流形)称为不可定向如果在流形上可取一个-维球的同胚像,在流形中移动后回到原点,使得在道路的最终点这个球反过来了,使用和上面对平面一样的定义。等价地,一个-维流形不可定向如果包含 (-1)-维球与单位区间的直积并通过一个反射黏合一端的球B×{0}与另一端球B×{1}所形成的空间的同胚像;例如对3-流形,这是一个实心克莱因瓶。

另一种定义使用结构群语言,一个可定向流形是结构群(一个先验的GL())可约化为保持定向变换的子群GL+()。具体地说,一个可定向流形存在一致定向(即所有转移映射保持定向)的一个开-维球覆盖。这里需要定义局部定向的含义,可使用向量丛的定向(局部定向是在一点切空间的定向)或使用奇异同调(一个定向是在一点选取第-阶相对同调群的生成元

这样一个流形称为可定向的如果可在整个流形上选取一个一致的局部定向。

使用同调能对紧-流形定义可定向性而不必考虑局部定向。一个紧-流形可定向当且仅当最高阶同调群 H n ( M , M ; Z ) {\displaystyle H_{n}(M,\partial M;\mathbb {Z} )} ,取二元组 (, )集合*,这里是的一点,是在点的一个定向;这里我们假设光滑从而我们可以在一点的切空间上选取定向,或者使用奇异同调定义定向。那么对的任何开定向子集,我们考虑相应的二元组集合,定义为* 的一个开子集。这给出了* 一个拓扑以及投影将 (, )映到x,是一个2-1覆盖映射。这个覆盖空间称为可定向二重复盖,因为它是可是可定向的。* 是连通的当且仅当不可定向。

另一种构造这个覆盖的一个方式是将在一个基点处的环路分成保持定向或逆转定向环路。保持定向环路生成基本群的一个子群要么是整个群要么指数为二。在后一种情形(这意味着存在逆转定向道路),子群对应于连通二重复盖;这个覆盖由构造过程可定向。在前一种情形,我们可简单地取的两个副本,每一个对应于不同的定向。

一个实向量丛,有一个先验的GL(n) 结构群,称为可定向的当结构群可以约化为正行列式矩阵群 G L + ( n ) {\displaystyle GL^{+}(n)} 。如果底流形可定向则这个约化总是可行的,事实上这也提供了定义光滑实流形的方便方法:一个光滑流形定义为可定向如果它的切丛(作为一个向量丛)是可定向的。注意作为一个流形,甚至是不可定向流形,切丛自己总是可定向的。

可定向性的概念本质来自实一般线性群的拓扑 GL ( n , R ) {\displaystyle \operatorname {GL} (n,\mathbf {R} )} ,具体是最低阶同伦群 π 0 ( GL ( n , R ) ) = Z / 2 {\displaystyle \pi _{0}(\operatorname {GL} (n,\mathbf {R} ))=\mathbf {Z} /2} :一个可逆实向量空间变换要么保持定向要么逆转定向。

这不仅对可微流形成立,对拓扑流形也同样成立,因为一个球面的自同伦等价空间有两个连通分支,可称为“保持定向”和“逆转定向”映射。

对称群类似的概念是偶置换的交错群。

相关

  • 双胎输血综合征双胎输血综合征(TTTS,又称为胎儿-胎儿输血综合征(FFTS)及双胞胎羊水过多-羊水过少症候群(TOPS))是一个因不成比例的血供产生的并发症,由此导致高发病率及高死亡率。它可影响单绒毛膜
  • 医疗器械医疗器械(Medical Device),在台湾称为医疗器材(Medical Device),又作医疗设备或医疗仪器(Medical Equipment),用于医疗工作的诊断(diagnosis)、监护(Monitoring)和治疗(treatment)。医疗器
  • 异涡动物门见内文异涡虫(学名:Xenoturbella) 是一类生活在海底极简单的两侧对称动物,现在仅知1属8种,分布于波罗的海和太平洋东部。第一个物种于1915年首次被发现。这种生物早在1949年就被
  • 昆阳之战昆阳之战,是中国新朝于公元23年(地皇四年,更始元年)时发生的一场内战战役。以绿林军为主体的刘秀军,在昆阳县(今河南省叶县)大破新朝王莽四十余万主力部队。昆阳之战的结果不仅仅直
  • 泰定泰定(1448年—1449年)为中国明朝时期起事者陈鉴胡的年号,前后共2年。李兆洛《纪元编》记为叶宗留年号。而根据诸史书记载,该年号在叶宗留死后为陈鉴胡所建。
  • 解放宣言《解放奴隶宣言》(英语:The Emancipation Proclamation)是份由美国总统亚伯拉罕·林肯于1863年1月1日公布的宣言,其主张所有美利坚邦联叛乱下的领土之黑奴应享有自由,然而未脱离
  • 州份州是中国使用的行政区划单位,后又作为部分联邦制国家组成单位的中文译名。在中国先秦时期就有州的名称。传说大禹治水后,将天下分为九州,亦有尧时期天下分为十二州之说。汉武帝
  • 凯洛诉新伦敦市案凯洛诉新伦敦市案(Susette Kelo, et al. v. City of New London, et al.),545 U.S. 469 (2005),是美国联邦最高法院判决的一起关于政府是否可以经济发展为理由征用私有财产并转
  • 美国黑人手语美国黑人手语(英语:Black American Sign Language,缩写作 BASL)又名黑人手语分支(Black Sign Variation,缩写作 BSV),是美国手语方言,在美国的非裔聋哑人群体中最为常见。作为美国手
  • 干部 (部首)干部,为汉字索引里为部首之一,康熙字典214个部首中的第五十一个(在三划部首中列为第二十二个)。干部通常是从下、左、右方及中间均可为部字,且无其他部首可用者将部首归为干部。1