算数阶层

✍ dations ◷ 2025-05-18 03:32:18 #数学,递归论,计算机科学

算术阶层是递归论或可计算性理论中的概念,将自然数的子集按照定义它们的公式的复杂度分类。

ϕ ( x ) {\displaystyle \phi (x)} 为自然数的语言中的公式,定义 ϕ {\displaystyle \phi } Δ 0 {\displaystyle \Delta _{0}} 公式当且仅当 ϕ {\displaystyle \phi } 中的所有量词都是有界量词(即形如 n < t {\displaystyle \exists n<t} n < t {\displaystyle \forall n<t} 的量词,其中 t {\displaystyle t} 为该语言中的项)。

定义 ϕ ( x ) {\displaystyle \phi (x)} Σ 1 0 {\displaystyle \Sigma _{1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\exists n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Δ 0 {\displaystyle \Delta _{0}} ;定义 ϕ {\displaystyle \phi } Π 1 0 {\displaystyle \Pi _{1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\forall n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Δ 0 {\displaystyle \Delta _{0}}

更进一步定义 ϕ ( x ) {\displaystyle \phi (x)} Σ n + 1 0 {\displaystyle \Sigma _{n+1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\exists n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Π n 0 {\displaystyle \Pi _{n}^{0}} 公式;定义 ϕ ( x ) {\displaystyle \phi (x)} Π n + 1 0 {\displaystyle \Pi _{n+1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\forall n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Σ n 0 {\displaystyle \Sigma _{n}^{0}} 公式。

A N {\displaystyle A\subseteq \mathbb {N} } ;若存在 Σ n 0 {\displaystyle \Sigma _{n}^{0}} 公式定义 A {\displaystyle A} 则称 A {\displaystyle A} Σ n 0 {\displaystyle \Sigma _{n}^{0}} 集合,若存在 Π n 0 {\displaystyle \Pi _{n}^{0}} 公式定义 A {\displaystyle A} 则称 A {\displaystyle A} Π n 0 {\displaystyle \Pi _{n}^{0}} 公式。(若有公式 ϕ {\displaystyle \phi } 与集合 A {\displaystyle A} ,使 A = { x | N ϕ ( x ) } {\displaystyle A=\{x\;\vert \;\mathbb {N} \vDash \phi (x)\}} ,则称 ϕ {\displaystyle \phi } 定义 A {\displaystyle A} 。)

若集合 A {\displaystyle A} 可以用图灵机(或任何等价的计算模型)计算得出,则称 A {\displaystyle A} Δ 0 {\displaystyle \Delta _{0}} 集合。若 A {\displaystyle A} 为递归可枚举集合则称 A {\displaystyle A} Σ 1 0 {\displaystyle \Sigma _{1}^{0}} 集合,若 A {\displaystyle A} 的补集 N A {\displaystyle \mathbb {N} \backslash A} 递归可枚举则称 A {\displaystyle A} Π 1 0 {\displaystyle \Pi _{1}^{0}} 集合。这一定义实际上与上面给出的定义是等价的。

更高阶层的算术类可以通过波斯特定理与可计算性联系起来:设 0 ( n ) {\displaystyle \mathbb {0} ^{(n)}} 为零不可解度的第 n {\displaystyle n} 次图灵跳跃,则任何集合 A {\displaystyle A} Σ n + 1 0 {\displaystyle \Sigma _{n+1}^{0}} 集合当且仅当 A {\displaystyle A} 可以用具备 0 ( n ) {\displaystyle \mathbb {0} ^{(n)}} 的预言机递归枚举;任何集合是 Π n + 1 0 {\displaystyle \Pi _{n+1}^{0}} 集合当且仅当其补集满足以上条件。

相关

  • 旅行者腹泻旅行者腹泻(traveler's diarrhea,簡稱TD)是一种肠胃道感染疾病。旅行者腹泻的定义是指在旅途之中,持续排出未成形粪便的状态。常常伴随着腹部痉挛性的疼痛、恶心、发烧、胀气。
  • Haemonchus contortus捻转血矛线虫(学名:Haemonchus contortus),又名扭旋血线虫,是寄生于反刍动物(特别是绵羊)消化道内的一种寄生虫,属毛圆科血矛属。成虫主要寄生在山羊和绵羊的真胃。捻转血矛线虫是一
  • 腺苷钴胺素维生素B12(Vitamin B12)为B族维生素之一,是一类含钴的复杂有机化合物。分子结构是以钴离子为中心的咕啉环和5,6-二甲基苯并咪唑为碱基组成的核苷酸。化学式为C63H88O14N14PCo,分
  • 化学肥料肥料是任一天然或合成的一种或多种植物成长发育所必需的营养元素,约30%~50%的作物产量增加是来归因于天然或无机化学合成的商业肥料。市面上出售的肥料种类及品牌极多,依成分
  • 第十二夜《第十二夜》(Twelfth Night, or What You Will),英国剧作家威廉·莎士比亚的浪漫喜剧,与莎士比亚许多其他剧作不同的是,它是唯一一个有另外一个名字的作者作品,又名《随心所欲》(W
  • 虾饺虾饺,以一层澄面皮包着一至两只虾为主馅,分量大小多以一口为限。传统的虾饺是半月形、蜘蛛肚的,共有十三褶。馅料有虾,有肉,有笋,现在流行的是独虾虾饺。优质美味的虾饺一定要皮薄
  • 本宁阿尔卑斯山脉本宁阿尔卑斯山脉(意大利语:Alpi Pennine;德语:Walliser Alpen;法语:Alpes valaisannes;英语:Pennine Alps),又称瓦莱阿尔卑斯山脉,是欧洲的阿尔卑斯山脉西南部的一段,位于瑞士(瓦莱州)和
  • 王 威王威可以指:
  • NBA最佳新秀阵容第一队NBA最佳新秀阵容(英语:NBA All-Rookie Team)是全美篮球协会(NBA)自1962-63赛季开始,每年授予在常规赛中有杰出表现的新秀球员的一种荣誉,由NBA各队的主教练投票(不能投给自队球员)产
  • 南横公路南部横贯公路,俗称南横公路,简称南横,为台湾的三条横贯公路建设之一。在编号上属于省道台20线,但一般仅称台20线的山区段为南横公路。依据交通部公路总局于梅山游客中心门口成立