首页 >
质心
✍ dations ◷ 2025-02-23 10:31:59 #质心
质心为多质点系统的质量中心。若对该点施力,系统会沿着力的方向运动、不会旋转。质点位置对质量加权取平均值,可得质心位置。以质心的概念计算力学通常比较简单。质心对应的英文有 center of mass 与 barycenter(或 barycentre,源自古希腊的 βαρύς heavy + κέντρον centre)。后者指两个或多个物体互绕物体的质量中心。Barycenter 在天文学和天文物理上是很重要的一个观念。从一个物体的质心转移一个距离至彼此的质心,可以简化成二体问题来进行计算。在两个天体当中,有一个比另一个大许多的情况下(在相对封闭的环境),质心通常会位于质量较大的天体之内。因而较小的天体会在轨道上绕着共同的质心运动,而较大的仅仅只会略微"抖动"。地月系统就是这样的状况,俩者的质心距离地球的中心4,671公里,而地球的半径是6,378公里。当两个天体的质量差异不大时,质心通常会介于两者之间,而这两个天体会呈现互绕的现象。冥王星和它的卫星夏戎,还有许多双小行星和联星,都是这种情况的例子。木星和太阳的质量相差虽然超过1,000倍,但因为它们之间的距离较大,也是这一类型的例子。在天文学,质心坐标是非转动坐标,其原点是两个或多个天体的质心所在。国际天球参考系统是质心坐标之一,它的原点是太阳系的质心所在之处。在几何学,质心不等同于重心,是二维形状的几何中心。质心不一定要在有重力场的系统中才会有意义,而重心则否。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处。在两质点系统中,取质心为原点,两质点连线为x轴,则两质点坐标
x
1
{displaystyle x_{1}}
和
x
2
{displaystyle x_{2}}
与质量
m
1
{displaystyle m_{1}}
与
m
2
{displaystyle m_{2}}
有如下关系:双星互绕时它们的质心位置:重力作用的平均位置,定义为各质点相对于重心(质心)的位置矢量乘上各质点的重力之和(合力矩)为零。在地球表面附近,重力场可被认定为均匀且平行向下,所以重心会等同于质心。
在物理学,使用“质心”来表示质量分布的好处,从以合力来考虑连续体的重力可以看出。考虑一个体积为V的体系(不一定是刚体),并设在物体内位置矢量为r的点的密度为ρ(r)。在均匀的重力场中,每个点r的场的作用力f由下式给出:其中dm是在点r的质量,g 是重力加速度,以及k 是定义垂直方向的单位矢量。
在这个体系中选择位置矢量为R的点为参考点,计算出点r所受的合力:以及点r相对点R合力矩:如果这个参考点R正好选在质心,则有这就意味着合力矩T=0。因为其合力矩为零,可以视为体系所有的质量集中于质心,而没有体系自身转动的效应。常用于天体力学一些不均匀的引力场中可以通过可变但并行的场来建模: .mw-parser-output .serif{font-family:Times,serif}g(r) = g(r)n,其中n是一些常数单位矢量。虽然不均匀的引力场不能完全平行,但如果物体足够小,这种近似可能是有效的。然后可以将重心定义为构成组成物体位置的特定加权平均值。即是质心平均超过每个粒子的质量,重心平均超过每个粒子的重量:此处
w
i
{displaystyle mathbf {w} _{mathrm {i} }}
是 i粒子和W 所有粒子的(标量)总重量。 该方程始终具有独特的解决方案,并且在并行场近似中,它与扭矩要求兼容。.
一个常见的例子涉及地球领域的月亮。使用加权平均定义,月球的重心比其质心更低(更接近地球),因为它的下部受地球引力的影响更大。(以下为未翻译内容,欢迎协助翻译)如果外部重力场是球对称的,那么它相当于点质量的场 M ,质点在球对称的中心 r。此时,重心可定义为一点,在该点上物体的合力可由 牛顿万有引力定律得到:此处G是引力常数,m是物体的质量。若合力非零,该等式有独一解,而且此解满足扭矩上的要求。 A convenient feature of this definition is that if the body is itself spherically symmetric, then rcg lies at its center of mass. In general, as the distance between r and the body increases, the center of gravity approaches the center of mass.Another way to view this definition is to consider the gravitational field of the body; then rcg is the apparent source of gravitational attraction for an observer located at r. For this reason, rcg is sometimes referred to as the center of gravity of M relative to the point r.
相关
- RTA肾小管性酸中毒(英语:Renal tubular acidosis、英语:RTA)涉及在体内酸的积累酸中毒(acidosis)、起于肾脏未能适当地酸化尿液而造成的医学疾病。当血液通过肾脏的过滤,滤液穿过
- 国家突发公共事件应急响应机制国家突发公共事件应急响应机制,是根据中华人民共和国国务院制订的《国家突发公共事件总体应急预案》所采取的全国性应急预案体系,其目的是提高政府保障公共安全和处置突发公共
- 佛列罗费列罗(Ferrero)是意大利费列罗集团,是全球第四大巧克力制造商,拥有一系列优质创新的产品,费列罗巧克力(费列罗Rocher)更是享誉全球的著名品牌。公司于1946年,由Pietro费列罗先生始
- 面筋面筋由面团里不溶于水的麸质组成,通常由小麦、大麦等谷物中所提取。中国于宋朝已有记载。把面团放于水里冲洗,当把所有可被水冲走的物质冲走后,剩下的就是面筋。而被冲洗到水中
- 加勒比区荷兰加勒比区(荷兰语:Caribisch Nederland)是属于荷兰本土的三个公共实体:博奈尔、圣尤斯特歇斯和萨巴的集体名称,又称BES群岛,其地名已在国际标准化组织的ISO 3166-1国际标准注册
- 畜牧畜牧学是研究家畜的饲养、管理、繁育以及其制品利用的科学,是畜牧业的基础学科。家畜是指人工饲养的动物,在古代的中国家畜主要指"六畜"(马、牛、羊、鸡、犬、猪),目前人工饲养的
- 暖通空调暖通空调(heating, ventilation and air conditioning,简称HVAC)是指室内或车内负责暖气、通风及空气调节的系统或相关设备。暖通空调系统的设计应用到热力学、流体力学及流体
- 指数衰减某个量的下降速度和它的值成比例,称之为服从指数衰减。用符号可以表达为以下微分方程,其中N是指量,λ指衰减常数(或称衰变常数)。方程的一个解为:这里N(t)是与时间t有关的量,N0 = N
- 国际刑事法院罗马规约《国际刑事法院罗马规约》通常也被称为《国际刑事法院规约》或称《罗马规约》,该规约于1998年7月17日在意大利罗马的外交会议上获得通过并于2002年7月1日生效。至2009年6月,规
- 腐烂分解作用,又称腐烂、腐败,是指动物蛋白质及其有关之有机物分解成无机物,而且回到大自然物质循环的过程,特别是由缺氧微生物和腐化细菌。分解是一个大自然经常进行且非常重要的过