首页 >
质心
✍ dations ◷ 2025-09-18 16:11:14 #质心
质心为多质点系统的质量中心。若对该点施力,系统会沿着力的方向运动、不会旋转。质点位置对质量加权取平均值,可得质心位置。以质心的概念计算力学通常比较简单。质心对应的英文有 center of mass 与 barycenter(或 barycentre,源自古希腊的 βαρύς heavy + κέντρον centre)。后者指两个或多个物体互绕物体的质量中心。Barycenter 在天文学和天文物理上是很重要的一个观念。从一个物体的质心转移一个距离至彼此的质心,可以简化成二体问题来进行计算。在两个天体当中,有一个比另一个大许多的情况下(在相对封闭的环境),质心通常会位于质量较大的天体之内。因而较小的天体会在轨道上绕着共同的质心运动,而较大的仅仅只会略微"抖动"。地月系统就是这样的状况,俩者的质心距离地球的中心4,671公里,而地球的半径是6,378公里。当两个天体的质量差异不大时,质心通常会介于两者之间,而这两个天体会呈现互绕的现象。冥王星和它的卫星夏戎,还有许多双小行星和联星,都是这种情况的例子。木星和太阳的质量相差虽然超过1,000倍,但因为它们之间的距离较大,也是这一类型的例子。在天文学,质心坐标是非转动坐标,其原点是两个或多个天体的质心所在。国际天球参考系统是质心坐标之一,它的原点是太阳系的质心所在之处。在几何学,质心不等同于重心,是二维形状的几何中心。质心不一定要在有重力场的系统中才会有意义,而重心则否。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处。在两质点系统中,取质心为原点,两质点连线为x轴,则两质点坐标
x
1
{displaystyle x_{1}}
和
x
2
{displaystyle x_{2}}
与质量
m
1
{displaystyle m_{1}}
与
m
2
{displaystyle m_{2}}
有如下关系:双星互绕时它们的质心位置:重力作用的平均位置,定义为各质点相对于重心(质心)的位置矢量乘上各质点的重力之和(合力矩)为零。在地球表面附近,重力场可被认定为均匀且平行向下,所以重心会等同于质心。
在物理学,使用“质心”来表示质量分布的好处,从以合力来考虑连续体的重力可以看出。考虑一个体积为V的体系(不一定是刚体),并设在物体内位置矢量为r的点的密度为ρ(r)。在均匀的重力场中,每个点r的场的作用力f由下式给出:其中dm是在点r的质量,g 是重力加速度,以及k 是定义垂直方向的单位矢量。
在这个体系中选择位置矢量为R的点为参考点,计算出点r所受的合力:以及点r相对点R合力矩:如果这个参考点R正好选在质心,则有这就意味着合力矩T=0。因为其合力矩为零,可以视为体系所有的质量集中于质心,而没有体系自身转动的效应。常用于天体力学一些不均匀的引力场中可以通过可变但并行的场来建模: .mw-parser-output .serif{font-family:Times,serif}g(r) = g(r)n,其中n是一些常数单位矢量。虽然不均匀的引力场不能完全平行,但如果物体足够小,这种近似可能是有效的。然后可以将重心定义为构成组成物体位置的特定加权平均值。即是质心平均超过每个粒子的质量,重心平均超过每个粒子的重量:此处
w
i
{displaystyle mathbf {w} _{mathrm {i} }}
是 i粒子和W 所有粒子的(标量)总重量。 该方程始终具有独特的解决方案,并且在并行场近似中,它与扭矩要求兼容。.
一个常见的例子涉及地球领域的月亮。使用加权平均定义,月球的重心比其质心更低(更接近地球),因为它的下部受地球引力的影响更大。(以下为未翻译内容,欢迎协助翻译)如果外部重力场是球对称的,那么它相当于点质量的场 M ,质点在球对称的中心 r。此时,重心可定义为一点,在该点上物体的合力可由 牛顿万有引力定律得到:此处G是引力常数,m是物体的质量。若合力非零,该等式有独一解,而且此解满足扭矩上的要求。 A convenient feature of this definition is that if the body is itself spherically symmetric, then rcg lies at its center of mass. In general, as the distance between r and the body increases, the center of gravity approaches the center of mass.Another way to view this definition is to consider the gravitational field of the body; then rcg is the apparent source of gravitational attraction for an observer located at r. For this reason, rcg is sometimes referred to as the center of gravity of M relative to the point r.
相关
- 多黏菌素B多粘菌素B(英语:Polymyxin B,又名多黏菌素B)是一种主要用于治疗 革兰氏阴性菌感染药物。它是从一种名为Bacillus polymyxa的细菌中被分离出来的。多粘菌素B是多粘菌素的一种,由两
- 刚果红刚果红是一种酸碱指示剂,当pH低于3.0时呈蓝色,高于5.2时呈红色。化学式为C32H22N6Na2O6S2;分子量696.66 g/mol。在生物学上可用刚果红筛选纤维素分解菌。原理如下:刚果红可与纤
- 反应化学反应工程(英语:Chemical reaction engineering)是一门探讨如何将实验室的化学反应转移至工厂进行规模化与商业化应用的工程学科,为化学工程的分支(英语:Outline_of_chemical_e
- 陈司成陈司成,字韶九,明代浙江海宁人。医学家。陈司成出身医道世家,八代业医,精外科。对于梅毒有深入了解,首创砷剂治疗梅毒。崇祯五年(1632年)撰有《霉疮秘录》一卷,是中国现存最早的梅毒
- 甲酰甲硫氨酸N-甲酰甲硫氨酸(英语:N-Formylmethionine,简写为fMet)是一种存在于细菌及相关的真核生物细胞器中的蛋白氨基酸。它是氨基酸甲硫氨酸的衍生物,其中一个甲酸基被加到原甲硫氨酸的氨
- 海峡群岛海峡群岛(法语:Îles de la Manche,英语:Channel Islands),又称盎格鲁-诺曼底群岛(法语:Îles Anglo-Normandes),是位于英吉利海峡中的群岛,群岛距离法国北部诺曼底只有大约10海里。整个
- 棕色脂肪组织棕色脂肪组织(英语:brown adipose tissue,缩写为BAT),是动物体内一种主要储存中、小型脂肪滴的脂肪细胞,可以产生身体的热能。棕色脂肪细胞具有大量线粒体,线粒体内膜上含有丰富的
- 非洲象非洲象属(学名:Loxodonta)是象科的一个属,于1825年由乔治·库维叶男爵命名。成年非洲雄象高于3.5米,最高更可达4.1米。体重约为4至5吨,最重记录有10吨。它们的长牙最高记录有102.7
- 外阴干枯症外阴干枯症、外阴干皱(英语:Kraurosis vulvae),是一类妇科外阴和阴道皮肤干枯和萎缩症状,经常与内部组织的慢性炎症反应有关。
- 白三烯D4白三烯D4(英语:Leukotriene D4)是白三烯的一种,在体内具有支气管收缩(英语:bronchoconstriction)、血管收缩、平滑肌收缩、增加血管通透性(英语:vascular permeability)等功能。医学导