首页 >
质心
✍ dations ◷ 2025-11-03 06:23:04 #质心
质心为多质点系统的质量中心。若对该点施力,系统会沿着力的方向运动、不会旋转。质点位置对质量加权取平均值,可得质心位置。以质心的概念计算力学通常比较简单。质心对应的英文有 center of mass 与 barycenter(或 barycentre,源自古希腊的 βαρύς heavy + κέντρον centre)。后者指两个或多个物体互绕物体的质量中心。Barycenter 在天文学和天文物理上是很重要的一个观念。从一个物体的质心转移一个距离至彼此的质心,可以简化成二体问题来进行计算。在两个天体当中,有一个比另一个大许多的情况下(在相对封闭的环境),质心通常会位于质量较大的天体之内。因而较小的天体会在轨道上绕着共同的质心运动,而较大的仅仅只会略微"抖动"。地月系统就是这样的状况,俩者的质心距离地球的中心4,671公里,而地球的半径是6,378公里。当两个天体的质量差异不大时,质心通常会介于两者之间,而这两个天体会呈现互绕的现象。冥王星和它的卫星夏戎,还有许多双小行星和联星,都是这种情况的例子。木星和太阳的质量相差虽然超过1,000倍,但因为它们之间的距离较大,也是这一类型的例子。在天文学,质心坐标是非转动坐标,其原点是两个或多个天体的质心所在。国际天球参考系统是质心坐标之一,它的原点是太阳系的质心所在之处。在几何学,质心不等同于重心,是二维形状的几何中心。质心不一定要在有重力场的系统中才会有意义,而重心则否。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处。在两质点系统中,取质心为原点,两质点连线为x轴,则两质点坐标
x
1
{displaystyle x_{1}}
和
x
2
{displaystyle x_{2}}
与质量
m
1
{displaystyle m_{1}}
与
m
2
{displaystyle m_{2}}
有如下关系:双星互绕时它们的质心位置:重力作用的平均位置,定义为各质点相对于重心(质心)的位置矢量乘上各质点的重力之和(合力矩)为零。在地球表面附近,重力场可被认定为均匀且平行向下,所以重心会等同于质心。
在物理学,使用“质心”来表示质量分布的好处,从以合力来考虑连续体的重力可以看出。考虑一个体积为V的体系(不一定是刚体),并设在物体内位置矢量为r的点的密度为ρ(r)。在均匀的重力场中,每个点r的场的作用力f由下式给出:其中dm是在点r的质量,g 是重力加速度,以及k 是定义垂直方向的单位矢量。
在这个体系中选择位置矢量为R的点为参考点,计算出点r所受的合力:以及点r相对点R合力矩:如果这个参考点R正好选在质心,则有这就意味着合力矩T=0。因为其合力矩为零,可以视为体系所有的质量集中于质心,而没有体系自身转动的效应。常用于天体力学一些不均匀的引力场中可以通过可变但并行的场来建模: .mw-parser-output .serif{font-family:Times,serif}g(r) = g(r)n,其中n是一些常数单位矢量。虽然不均匀的引力场不能完全平行,但如果物体足够小,这种近似可能是有效的。然后可以将重心定义为构成组成物体位置的特定加权平均值。即是质心平均超过每个粒子的质量,重心平均超过每个粒子的重量:此处
w
i
{displaystyle mathbf {w} _{mathrm {i} }}
是 i粒子和W 所有粒子的(标量)总重量。 该方程始终具有独特的解决方案,并且在并行场近似中,它与扭矩要求兼容。.
一个常见的例子涉及地球领域的月亮。使用加权平均定义,月球的重心比其质心更低(更接近地球),因为它的下部受地球引力的影响更大。(以下为未翻译内容,欢迎协助翻译)如果外部重力场是球对称的,那么它相当于点质量的场 M ,质点在球对称的中心 r。此时,重心可定义为一点,在该点上物体的合力可由 牛顿万有引力定律得到:此处G是引力常数,m是物体的质量。若合力非零,该等式有独一解,而且此解满足扭矩上的要求。 A convenient feature of this definition is that if the body is itself spherically symmetric, then rcg lies at its center of mass. In general, as the distance between r and the body increases, the center of gravity approaches the center of mass.Another way to view this definition is to consider the gravitational field of the body; then rcg is the apparent source of gravitational attraction for an observer located at r. For this reason, rcg is sometimes referred to as the center of gravity of M relative to the point r.
相关
- 钾4s12,8,8,1蒸气压第一:418.8 kJ·mol−1 第二:3052 kJ·mol−1 第三:4420 kJ·mol−1 (主条目:钾的同位素钾(拉丁语:Kalium,化学符号:K)是原子序数为19的化学元素。最早于植物的灰烬
- 开罗开罗(阿拉伯语:القـــاهــرة,转写:al-Qāhira)是埃及首都。开罗在古埃及时期称优努(古埃及语:ỉwnw,拉丁化:lunu,意为“通道”)或安努(Anu),圣经中称作安(On)、赫利奥波利斯(希
- 植物神经系统自主神经系统(英语:autonomic nervous system,缩写为ANS),又称植物神经系统(vegetative nervous system,VNS)或内脏神经系统(visceral nervous system,VNS),与躯体神经系统共同组成脊椎
- 天主教罗马教区天主教罗马教区(拉丁语:Dioecesis Urbis;意大利语:Diocesi di Roma)是天主教会在意大利首都罗马设置的教区,辖区实际上包含罗马市与梵蒂冈城国。其拉丁文名称的“Urbis”是“城市
- 水体水体(英语:body of water或waterbody) 是一个译自英文的外来词,指各种明显具水的累积之处;通常位于地表或其他星球。水体一词,通常指的是较多水所累积之处,例如河海湖泊等,但也可指
- 狩猎采集狩猎采集者是指生活在大部分或所有的食物都是通过觅食(采集野生植物和追捕野生动物)的社会或群体中的人。狩猎采集社会与农业社会形成对比,后者主要依靠驯化物种来生活。狩猎和
- 异涡动物门见内文异涡虫(学名:Xenoturbella) 是一类生活在海底极简单的两侧对称动物,现在仅知1属8种,分布于波罗的海和太平洋东部。第一个物种于1915年首次被发现。这种生物早在1949年就被
- 弗里斯兰人主要为基督教 基督教传入之前,弗里斯兰人多信奉传统泛灵信仰。现在主要崇奉弗里斯兰人(德语:Friesen;荷兰语:Friezen;英语:Frisians),又称弗里西人、弗里西亚人,是生活在北海弗里西
- 右心耳心房(拉丁语:Atrium)旧称䆝,是构成心脏腔室的一种。心脏分心房与心室,分别负责接收 左心房则可根据胚胎来源被分为左心耳和左心房窦。和原始静脉窦右角发展而来的腔静脉窦。在右
- 汉斯·克里斯蒂安·安徒生汉斯·克里斯汀·安徒生(丹麦语:Hans Christian Andersen,1805年4月2日-1875年8月4日),通称安徒生,丹麦作家暨诗人,因为其童话作品而闻名于世,童话中带出含义,哲学家。其笔下著名的童
