质心

✍ dations ◷ 2025-12-11 05:31:18 #质心
质心为多质点系统的质量中心。若对该点施力,系统会沿着力的方向运动、不会旋转。质点位置对质量加权取平均值,可得质心位置。以质心的概念计算力学通常比较简单。质心对应的英文有 center of mass 与 barycenter(或 barycentre,源自古希腊的 βαρύς heavy + κέντρον centre)。后者指两个或多个物体互绕物体的质量中心。Barycenter 在天文学和天文物理上是很重要的一个观念。从一个物体的质心转移一个距离至彼此的质心,可以简化成二体问题来进行计算。在两个天体当中,有一个比另一个大许多的情况下(在相对封闭的环境),质心通常会位于质量较大的天体之内。因而较小的天体会在轨道上绕着共同的质心运动,而较大的仅仅只会略微"抖动"。地月系统就是这样的状况,俩者的质心距离地球的中心4,671公里,而地球的半径是6,378公里。当两个天体的质量差异不大时,质心通常会介于两者之间,而这两个天体会呈现互绕的现象。冥王星和它的卫星夏戎,还有许多双小行星和联星,都是这种情况的例子。木星和太阳的质量相差虽然超过1,000倍,但因为它们之间的距离较大,也是这一类型的例子。在天文学,质心坐标是非转动坐标,其原点是两个或多个天体的质心所在。国际天球参考系统是质心坐标之一,它的原点是太阳系的质心所在之处。在几何学,质心不等同于重心,是二维形状的几何中心。质心不一定要在有重力场的系统中才会有意义,而重心则否。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心通常不在同一假想点上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处。在两质点系统中,取质心为原点,两质点连线为x轴,则两质点坐标 x 1 {displaystyle x_{1}} 和 x 2 {displaystyle x_{2}} 与质量 m 1 {displaystyle m_{1}} 与 m 2 {displaystyle m_{2}} 有如下关系:双星互绕时它们的质心位置:重力作用的平均位置,定义为各质点相对于重心(质心)的位置矢量乘上各质点的重力之和(合力矩)为零。在地球表面附近,重力场可被认定为均匀且平行向下,所以重心会等同于质心。 在物理学,使用“质心”来表示质量分布的好处,从以合力来考虑连续体的重力可以看出。考虑一个体积为V的体系(不一定是刚体),并设在物体内位置矢量为r的点的密度为ρ(r)。在均匀的重力场中,每个点r的场的作用力f由下式给出:其中dm是在点r的质量,g 是重力加速度,以及k 是定义垂直方向的单位矢量。 在这个体系中选择位置矢量为R的点为参考点,计算出点r所受的合力:以及点r相对点R合力矩:如果这个参考点R正好选在质心,则有这就意味着合力矩T=0。因为其合力矩为零,可以视为体系所有的质量集中于质心,而没有体系自身转动的效应。常用于天体力学一些不均匀的引力场中可以通过可变但并行的场来建模: .mw-parser-output .serif{font-family:Times,serif}g(r) = g(r)n,其中n是一些常数单位矢量。虽然不均匀的引力场不能完全平行,但如果物体足够小,这种近似可能是有效的。然后可以将重心定义为构成组成物体位置的特定加权平均值。即是质心平均超过每个粒子的质量,重心平均超过每个粒子的重量:此处 w i {displaystyle mathbf {w} _{mathrm {i} }} 是 i粒子和W 所有粒子的(标量)总重量。 该方程始终具有独特的解决方案,并且在并行场近似中,它与扭矩要求兼容。. 一个常见的例子涉及地球领域的月亮。使用加权平均定义,月球的重心比其质心更低(更接近地球),因为它的下部受地球引力的影响更大。(以下为未翻译内容,欢迎协助翻译)如果外部重力场是球对称的,那么它相当于点质量的场 M ,质点在球对称的中心 r。此时,重心可定义为一点,在该点上物体的合力可由 牛顿万有引力定律得到:此处G是引力常数,m是物体的质量。若合力非零,该等式有独一解,而且此解满足扭矩上的要求。 A convenient feature of this definition is that if the body is itself spherically symmetric, then rcg lies at its center of mass. In general, as the distance between r and the body increases, the center of gravity approaches the center of mass.Another way to view this definition is to consider the gravitational field of the body; then rcg is the apparent source of gravitational attraction for an observer located at r. For this reason, rcg is sometimes referred to as the center of gravity of M relative to the point r.

相关

  • 恶魔蠕虫恶魔蠕虫(学名:Halicephalobus mephisto)也称魔鬼蠕虫、魔鬼线虫,是2011年在南非一座金矿中发现的一种新线虫,生活在地面以下1.3公里深的极端环境中,身长约0.5毫米。
  • 小脑萎缩症小脑萎缩症,又称脊髓小脑萎缩症(Spinocerebellar Atrophy)或脊髓小脑失调症(Spinocerebellar Ataxia,简写为SCA),是一类遗传病,涉及不同基因,目前没有任何治疗方法。本病病因不明,但大
  • 云南省微生物研究所云南省微生物研究所于1979年成立。1978年,姜成林等5位科学家向云南省科委报告建立云南省微生物研究所的必要性,获得批准后,由中国科学院昆明植物所农抗组,及中国科学院昆明动物
  • 安替比林安替比林是一种止痛药、非甾体抗炎药和退烧药。路德维希克诺尔在1883年第一次合成出安替比林。借由钠汞齐和甲醇还原邻二硝基二苯合成,或者借由加热二亚苯基邻二肼与盐酸至15
  • 黄道黄道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转)。太阳的视运动轨迹并不能
  • 伊藤正男伊藤正男(日语:伊藤 正男/いとう まさお Itō Masao,1928年12月4日-2018年12月18日),日本神经科学家,理化学研究所脑科学研究所主任。他曾获得2006年格鲁伯神经科学奖和1996年日本
  • 奥沙唑仑奥沙唑仑(Oxazolam)为一种神经系统用药、镇静催眠药、抗焦虑药物。此药是地西泮、氯氮的主要代谢产物。他的药理作用和地西泮、氯氮类似但弱些,属于短到中效苯二氮平类药物。市
  • 新加坡工人党工人党(英语:Workers' Party)是新加坡的一个中间偏左政党。该党是现在新加坡最大的反对党,但它在新加坡的影响力远不及执政党人民行动党。目前,该党在国会的89个选举席位和3个非
  • 沃卓斯基姐妹Thea Bloom (1993年10月30日 - 2002年12月申请离婚) Karin Winslow (2009–至今)沃卓斯基姐妹(英语:The Wachowskis),原称沃卓斯基兄弟(Wachowski Brothers)或沃卓斯基姐弟,是人们对
  • 联邦制度联邦制(英语:federation)是由两个或两个以上的政治实体(共和国、州、邦、省等等)结合而成的一种国家结构形式。视国家领导人为君主或民选领导人,联邦制可分为联邦共和制和联邦君主