二次互反律

✍ dations ◷ 2025-12-06 06:10:57 #二次剩余,数学定理

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程 x 2 p ( mod q ) {\displaystyle x^{2}\equiv p{\pmod {q}}} 同余。直观来说,是指二次同余方程 x 2 a ( mod n ) {\displaystyle x^{2}\equiv a{\pmod {n}}} 的剩余,只需将这个合数进行质因数分解,研究其每个质因数是不是模的剩余即可。因此,为了寻找模质数的二次剩余的规律,可以先研究对于前几个质数2、3、5等的情况,看对于什么样的质数,2、3、5等是模它们的剩余。此外为了研究正负号对乘积的影响,也要研究-1的情况。为了发现规律,可以借助50以内的质数的二次剩余表。

下表列出了1至20模50以内的质数的二次剩余。其中每一行列出了模相应质数的所有剩余。因此要看某个整数 k {\displaystyle k} 2 +  + 2,在是整数的情况,只能被模7二次剩余的质数整除,不可能被模7二次非剩余的质数整除,因为b2-4ac=-7,所以只能被模7二次剩余的质数整除。

对于2、7、11、23、29、37、43、53、67、71、79、107、109、113、127、137等质数都是模7的二次剩余。(OEIS中的数列A045373)

对于3、5、13、17、19、31、41、47、59、61、73、83、89、97、101、103、131、139等质数都是模7的二次非剩余。(OEIS中的数列A003625)

对于一般的情况,也有类似的规律。在此基础上,高斯和勒让德提出了两个一般性的叙述(没有使用勒让德符号),两者是等价的。

如果 q 1 ( mod 4 ) {\displaystyle q\equiv 1{\pmod {4}}} (横列元素)为对应的(竖列元素)的二次剩余,N则表示相反情况(此表示法由高斯创造)。可以看到白格内的元素是关于对角线对称的,黄格内则关于对角线反对称。可以说黄格代表了一种“特殊情况”。

观察上表中黄格的情况,可以看出相对应的两个质数都是模4余3的。因此勒让德的陈述为:

二次互反律曾被不少的数学家研究,因此二次互反律的叙述有很多种。要注意的是当时的数学记号并不统一。欧拉和勒让德并没有高斯的同余记号,高斯也不知道勒让德符号。

 下文中的和总是不相等的正奇质数。

前期探索

费马曾经证明了(或声称证明了)一系列关于将质数表示成平方和的定理

他并没有给出二次互反律的陈述,尽管由此类的定理可以得到–1、±2和±3的情况。

此外欧拉曾经猜想(后被勒让德证明) :

证明费马的这类命题是导致二次互反律的发现的因素之一。

欧拉在1783年曾经写过(以现今的符号表示):

1) 如果 ≡ 1 (mod 4) 那么是模的二次剩余当且仅当 ≡ (mod ),其中是一个模的二次剩余。

2) 如果 ≡ 3 (mod 4) 那么是模的二次剩余当且仅当 ≡ ±2 (mod 4), 其中为奇数但不被整除。

这是二次互反律首次被完整地陈述。欧拉也证明了 2的情况。

勒让德用和表示模4余1的正质数,用和表示模4余3的正质数。他建立了一个有8个定理的表格,这8个定理合起来就是二次互反律。


勒让德认为表达式 N c 1 2 ( mod c ) {\displaystyle N^{\frac {c-1}{2}}{\pmod {c}}} 、为互质的数。

这个符号就是现在使用的勒让德符号:对于所有的整数以及任意奇质数:

勒让德使用勒让德符号的叙述为:

他也提到上面的两种情况可以合并为:

勒让德完整地证明了八种情况中的第一、第二和第七种。在证明第八种情况时,勒让德作了一个可以等价于狄利克雷定理的假设。正如高斯在其《算术研究》中指出的。勒让德实际上证明了二次互反律是狄利克雷定理成立的情况下的一个推论。

第一个完整地给出二次互反律的证明的人是德国数学家高斯。高斯在1796年给出了二次互反律的第一个证明。高斯首先证明了 -1和2的情况。作为进行数学归纳法的开始,他证明了±3和±5的情况。他注意到-3和+5的情况较有规律,容易叙述,因此把定理叙述为:

如果 p {\displaystyle p} 为质数,上式左边是勒让德符号,于是我们可以知道是否是模的剩余。

以上各节的公式对雅可比符号仍然成立。欧拉的公式可以写作:

其中n为整数, m ± 4 a n > 0 {\displaystyle m\pm 4an>0} 是模 + 4、 + 8、……中所有质数的非剩余,如果这种质数存在的话。但此种质数的存在性直到数十年后才由狄利克雷证明。

艾森斯坦的公式则需要两数互质才能成立:如果 a , b , a , b {\displaystyle a,b,a',b'} 、是两个非零的有理数,则可代表任意非平凡的有理数绝对值(的常用的或p进的绝对值)。希尔伯特符号: ( a , b ) v {\displaystyle (a,b)_{v}} 的完备空间中有除了 x = y = z = 0 {\displaystyle x=y=z=0} 、,当变动时,除了对有限个以外, ( a , b ) v {\displaystyle (a,b)_{v}} 时,所有 ( a , b ) v {\displaystyle (a,b)_{v}} 的乘积为1(这与复分析中的留数定理相似)。

希尔伯特二次互反律的证明可以归结到几个特殊情况,可以证明其中非平凡的情况与勒让德符号下的二次互反律的两个辅助定理(-1和2的情况)是等价的。在希尔伯特二次互反律中其实并没有“互反”的情形,它的名字只是表明它的历史来源是作为二次互反律的研究成果。不同于二次互反律要考虑正负问题,并要区分2的情况,希尔伯特二次互反律对所有的有理数都是平等的。因此使用希尔伯特符号的二次互反律推广起来更为自然:其推广到整体域时只需做出很少改变,并对所有的整体域都适用。

以二次互反律配合以下两个辅助定理

即能迅速地计算勒让德符号,从而解决二次剩余的判别问题。

例如判别37是否是模89的二次剩余:

所以 ( 37 89 ) = ( 89 37 ) = ( 89 37 37 37 ) = ( 15 37 ) = ( 3 37 ) ( 5 37 ) = ( 37 3 ) ( 37 5 ) = ( 1 3 ) ( 2 5 ) = 1 {\displaystyle \left({\frac {37}{89}}\right)=\left({\frac {89}{37}}\right)=\left({\frac {89-37-37}{37}}\right)=\left({\frac {15}{37}}\right)=\left({\frac {3}{37}}\right)\left({\frac {5}{37}}\right)=\left({\frac {37}{3}}\right)\left({\frac {37}{5}}\right)=\left({\frac {1}{3}}\right)\left({\frac {2}{5}}\right)=-1}

因此37不是模89的二次剩余。

二次互反律的推广主要是在代数数论中。

例如:高斯考察过四次互反律。在他的首篇论文里他证明了一系列定理,其中最重要的是:如果 p 1 mod 4 {\displaystyle p\equiv 1\mod 4} ,那么 x 4 2 mod p {\displaystyle x^{4}\equiv 2\mod p} 有解当且仅当 p = a 2 + 64 b 2 {\displaystyle p=a^{2}+64b^{2}} ,其中 a {\displaystyle a} b {\displaystyle b} 是整数,如果 p 1 mod 4 {\displaystyle p\equiv 1\mod 4} ,那么 x 4 3 mod p {\displaystyle x^{4}\equiv -3\mod p} 有解当且仅当 p = a 2 + 36 b 2 {\displaystyle p=a^{2}+36b^{2}} ,其中 a {\displaystyle a} b {\displaystyle b} 是整数,如果 p 1 mod 4 {\displaystyle p\equiv 1\mod 4} ,那么 x 4 5 mod p {\displaystyle x^{4}\equiv 5\mod p} 有解当且仅当 p = a 2 + 100 b 2 {\displaystyle p=a^{2}+100b^{2}} ,其中 a {\displaystyle a} b {\displaystyle b} 是整数,如果 p 3 mod 4 {\displaystyle p\equiv 3\mod 4} ,那么模 p {\displaystyle p} 的二次剩余必然是四次剩余。

在第二篇论文中,高斯引进了著名的高斯整数。高斯证明了模4余1的质数总能分解为两个高斯整数中质数的乘积、唯一分解定理等其它代数数论的基础定理,并引进了一些基本概念,如范数和单位元。在高斯整数中,四次互反律的叙述十分简单。高斯并且注意到在艾森斯坦整环中,三次互反律最为简单。一部分的原因是高斯整数中1有4个四次方根,而艾森斯坦整数中1有3个三次方根。

其它的推广是在以上整环中的二次互反律。高斯率先研究了高斯整数中的二次互反律。

相关

  • Ksup+/sup钾离子(K+)是金属元素钾的阳离子。钾是人类营养中的一种必要宏量元素,也是动物细胞中主要的阳离子,同时在体液及电解质平衡上非常的重要。大量血浆(约每天180升)在肾脏的肾小球处
  • 非正统经济学思想非主流经济学(英语:Heterodox economics),又称异端经济学、非正统经济学,是指采取不同于主流经济学研究方法的经济学学派的概称。主流经济学,又称正统经济学,是指在英语世界中,具备
  • 教育可视化可视化是指用于创建图形、图像或动画,以便交流沟通讯息的任何技术和方法。在历史上包括洞穴壁画、埃及象形文字等,如今可视化有不断扩大的应用领域,如科学教育、工程、互动多媒
  • 褐孢霉黄枝孢霉(学名:Mycovellosiella fulva)属于一种真菌,是引发叶霉病的病原菌。2006-2007年,在西班牙东南部城市阿尔梅里亚的温室中爆发了番茄叶霉病。这是西班牙东南部地区首次发现
  • 碧根果长山核桃(学名:Carya illinoinensis),属胡桃科的一种植物。通称“碧根果”(Pecan),又名“美国山核桃”、“薄壳山核桃”等。落叶乔木,一般株高20~25米,最高可达55米,树皮浅裂,芽有柔毛,幼
  • 鲫鱼鲫(学名:Carassius auratus),通称鲫鱼,俗名鲫瓜子、月鲫仔、土鲫、细头、鲋鱼、寒鲋,为鲤科鲫属的一种,在欧亚地区为常见淡水鱼。鲫鱼经过人工养殖和选育,可以产生许多新品种,例如金
  • 灵场灵场一词主要在日本使用,字面意思是指灵魂聚集之处,在日本通常即为神社、寺院或墓地等地。但灵场并非令人恐惧的禁地,相反地,灵场作为信仰圣地的意义强烈,是日本许多信徒与修验道
  • 埃斯梅拉达埃斯梅拉达县(Esmeralda County, Nevada),美国内华达州西南部的一个县,西南邻加利福尼亚州。面积9,295平方公里,根据美国人口调查局2005年数字,共有人口1,276人,是全州人口最少的县
  • 坐牛坐牛(拉科塔语:Tȟatȟáŋka Íyotake;英语:Sitting Bull;约1831年-1890年12月15日),美国印第安人拉科塔族胡克帕帕(英语:Hunkpapa)领袖。1831年3月坐牛生于今日美国南达科他州北部,幼
  • 长沙花鼓戏长沙花鼓戏为中国湖南东部和中部所流行的一个剧种,形成于清朝。由于当时流行的范围主要是在长沙府各地(今长沙,湘潭,株洲,益阳,娄底等地),并且以长沙话为统一的舞台语言,因此被称为长