集合覆盖问题

✍ dations ◷ 2025-07-16 05:55:47 #组合数学,计算机科学,计算复杂性理论

集合覆盖问题( Set covering problem,SCP)是组合数学、计算机科学和计算复杂性理论中的一个经典问题。

集合覆盖的决定性问题是卡普的二十一个NP-完全问题之一。

给定全集 U {\displaystyle {\mathcal {U}}} 指一个集合 C {\displaystyle {\mathcal {C}}} C S {\displaystyle {\mathcal {C}}\subseteq {\mathcal {S}}} ,且 C {\displaystyle {\mathcal {C}}} 的元素的并集为 U {\displaystyle {\mathcal {U}}}

集合覆盖问题的决定性问题为,给定 ( U , S ) {\displaystyle ({\mathcal {U}},{\mathcal {S}})} 和一个整数 k {\displaystyle k} ,求是否存在一个大小不超过 k {\displaystyle k} 的覆盖。集合覆盖的最佳化问题为给定 ( U , S ) {\displaystyle ({\mathcal {U}},{\mathcal {S}})} ,求使用最少的集合的一个覆盖。

决定性问题的集合覆盖是NP完全问题,最佳化问题的集合覆盖是NP困难问题。

此外,问题可以在每个集合上添加权值而变为带权集合覆盖问题。

相关

  • 生源说生源说(英语:Biogenesis,又称为生源论、生生论)是主张生物体只能来源于先存的另一个生命的理论,例如蜘蛛生蛋,后者又发育成蜘蛛。这种理论也指认为生物化学过程只能发生在生物体内
  • 攻击性在心理学、其他社会学或行为科学领域,侵略是一种造成伤害或痛苦的行为,包括物质和非物质二方面。作为行为,即使没有造成实际的伤害或痛苦可能是侵略;意外造成伤害或者痛苦不是侵
  • 95%人口台湾汉人,或称台湾汉族,是指出生或居住在台湾本岛及澎湖群岛的汉人,由17-19世纪间、1945年-1949年间等两大批来自中国大陆的汉族移民构成。明末至清代零星由山东、江苏、浙江、
  • 地方公共团体编号全国地方公共团体编号(日语:全国地方公共団体コード)是日本地方公共团体(都道府县、市町村、特别区、行政区、一部事务组合等)的5-6位数编码。又名JIS地名编号、地方自治体编号、
  • 泰斯塔乔恩·特斯特(英语:Jon Tester ;1956年8月21日-),是一位美国民主党政治人物,2007年起担任蒙大拿州美国参议院议员。特斯特2006年击败共和党时任联邦参议员康拉德·波恩斯(英语:Conrad
  • 君山君山位于湖南岳阳西部的洞庭湖中,是一个小岛,全称君山岛又名爱情岛。国家5A级景区,面积仅0.96平方公里,最高峰海拔63.5米。古代称为湘山、洞庭山。屈原在《九歌》中把葬于此的二
  • 中华盖饭中华丼(日语:中華丼/ちゅうかどん),意思为“中国式盖浇饭”,是日本仿效中国菜的料理。据说从昭和时代开始,在东京的中华料理店,客人在米饭上面浇上八宝菜,从此成了日式中华盖饭的前身
  • 漳州 (古代)漳州(闽南语:Chiang-chiu)是中国古代的州,于今日的福建省境内。唐朝垂拱二年(686年)分福州西南境置,《元和郡县志》:漳州“因漳水为名”。设置漳浦、怀恩二县,治所在漳浦县(今福建省云
  • 潘石屹潘石屹(1963年11月14日-),生于甘肃省天水市。从80年代起就一直活跃在中国地产界,1995年与夫人张欣共同创立SOHO中国。2015年,潘石屹推出共享办公产品SOHO 3Q。潘石屹是中国互联网
  • 车工车工,是机械工业中专职操作车床的工种,是机械工业的一个常见的工种。车床常用来加工各旋转工件和带有螺纹的工件。一个合格的车工应能独立完成从来料检测、图纸阅读、制定工艺