首页 >
粘度
✍ dations ◷ 2025-01-22 23:46:00 #粘度
黏度(英语:Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在室温(25℃)及常压(1巴)下,空气的黏度为18.5μPa·s,大约比在相同温度下的水黏度小50倍。在常温(20℃)常压下,汽油的黏度为0.65mPa·s,水为1mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102mPa·s,蓖麻油为103mPa·s,蜂蜜为104mPa·s,焦油为106mPa·s,沥青为108mPa·s,等等。最普通的液体黏度大致在1~1000mPa·s,气体的黏度大致在1~10μPa·s。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。黏度较高的物质,比较不容易流动;而黏度较低的物质,比较容易流动。例如油的黏度较高,因此不容易流动;而水黏度较低,不但容易流动,倒水时还会出现水花,倒油时就不会出现类似的现象。黏滞力是流体受到剪应力变形或拉伸应力时所产生的阻力。在日常生活方面,黏滞像是“黏稠度”或“流体内的摩擦力”。因此,水是“稀薄”的,具有较低的黏滞力,而蜂蜜是“浓稠”的,具有较高的黏滞力。简单地说,黏滞力越低(黏滞系数低)的流体,流动性越佳。黏滞力是粘性液体内部的一种流动阻力,并可能被认为是流体自身的摩擦。黏滞力主要来自分子间相互的吸引力。例如,高粘度酸性熔岩产生的火山通常为高而陡峭的锥状火山,因为其熔岩浓稠,在其冷却之前无法流至远距离因而不断向上累加;而黏滞力低的镁铁质熔岩将建立一个大规模、浅倾的盾状火山。所有真正的流体(除超流体)有一定的抗压力,因此有粘性。没有阻力对抗剪剪应力的流体被称为理想流体或无粘流体。黏度
μ
{displaystyle mu }
定义为流体承受剪应力时,剪应力与流体单位速度差的比值,数学表述为:式中:
τ
{displaystyle tau }
为剪应力,
u
{displaystyle u}
为速度场在
x
{displaystyle x}
方向的分量,
y
{displaystyle y}
为与
x
{displaystyle x}
垂直的方向坐标。流体的黏度是由于相邻层间以不同的速度运动时产生的摩擦造成的。管中心处阻力最小,液层流动速度最大;管壁附近液层同时受到液体黏性阻力和管壁摩擦力作用,速度最小,在管壁上液层的移动速度为零(假定在不产生滑移时)。因此,一些附近的压力(如两头管的压力差)需要克服摩擦层之间阻力,来保持流体流动。同样的速度模式,应力应正比于流体的黏度。实际上,有两个量被称为黏度。一种被称为动态粘度、绝对粘度或简单粘度(来区别其他的量),但通常也称为粘度。另外一种量称为运动粘度(用符号ν表示),它是流体的粘度与密度的比值。加工过程中,聚合物的流变性质主要表现为粘度的变化,根据流动过程中聚合物粘度与应力或应变速率的关系,将聚合物的流动行为分为:牛顿流体——粘度μ为常数;非牛顿流体——表观粘度μ不为常数。是两个板块之间流体的层流剪切。而流体和移动边界之间的摩擦导致了流体剪切,描述这种行为强度的是流体的黏度。在一般的平行流动中(如可能发生在一个直管中),剪切应力正比于速度梯度。相互平行的相邻层之间的移动速度不同,产生剪切。而流体的剪切黏度是描述对剪切流动的抵抗能力。在理想情况下,它被定义为库爱特流——被困在水平板(一侧固定,一侧以恒定速度水平运动)间的一层流体。(注:通常认为板块非常大,不需要考虑边缘附近的情况。)如果顶板的速度足够小,流体粒子将平行于它流动,并且它们的速度从底部的0到顶部的ν呈线性变化。流体的每一层流动速度快于它的下一层,它们之间会产生一个抵抗它们相对运动的摩擦力。特别是,流体将在顶板运动的反方向施加一个力,在底板也会产生一个等大反向的力。因此需要一个外力来维持顶板以恒定的速度运动。力F的大小正比于每块板的运动速度u和面积A,而反比于两板之间的距离,即在这个公式中,比例系数
μ
{displaystyle mu }
是流体的黏度(特别是动态黏度);
u
y
{displaystyle {frac {u}{y}}}
的比值称为剪切变形或剪切速度,是垂直于板的速度上流体速度的导数。牛顿用微分方程表达出了剪切应力:这个公式假设流动是沿着平行线的,并且垂直于流动方向的y轴指向最大剪切速度。这个方程可以用于速度非线性变化的情况,比如在流体流经管道中时的情况。运动黏度是剪切黏度μ除以液体的密度ρ,通常用希腊字母ν表示。方便研究雷诺数。一个可压缩流体被均匀压缩或扩展时,没有剪切,但它仍然以内部摩擦的形式表现来抵制它的流动。这些力的一个与压缩或膨胀率有关的因素σ,称为体积黏度,或第二黏度。只有当流体被迅速压缩或扩展时,如声音和冲击波,体积黏度显得很重要。体积黏度解释了这些波的能量损失,正如斯托克斯的声衰减规律所描述的。在一般情况下,流动中的应力可部分归因于从休息状态的材料的变形(弹性应力),部分归因于变形随时间的变化率(黏性应力)。在流体中,根据定义,弹性应力仅包括静水压力。 在一般的术语中,流体的黏度是应变率和黏性应力之间的关系。在牛顿流体模型,关系是通过定义一个线性映射,由黏度张量描述,乘以应变率张量(这是流动的速度梯度),给出了黏性应力张量。 一般,黏度张量具有九个独立的自由度。各向同性的牛顿流体,这可以减少到两个独立的参数。最常见的是,应力黏度μ和本体黏度σ。表观黏度与剪切速率无关的流动特性的流体(即服从牛顿粘性定律的流体)称为牛顿流体。黏性定律是一个本构方程,而不是一个自然法则。一种流体的行为符合牛顿定律,黏度μ独立于应力的称为牛顿流体。气体,水和许多常见的液体可以在普通的条件和环境考虑为牛顿流体。牛顿流体的流动曲线(剪切应力与剪切速率的关系曲线称为流动曲线),是一条通过原点的直线。牛顿流体的黏度是直线的斜率。对于同一流体,在任何剪切速率下,黏度相同,与剪切速率无关。黏度不同的流体,斜率不同。表观黏度随剪切速率而变化。它不再是物性常数,但它与牛顿黏度同量纲。黏性定律是一个本构方程,而不是一个自然法则。一种流体的行为符合牛顿定律,黏度μ独立于应力的成为牛顿流体。气体,水和许多常见的液体可以在普通的条件和环境考虑为牛顿流体。有许多明显偏离牛顿定律的非牛顿流体,比如:即使是牛顿流体,黏度通常取决于其组成和温度。气体等可压缩性流体,这取决于温度,而随压力变化很慢。一些流体的黏度可能取决于其他因素。例如磁流变流体,流体在加磁场后变厚,可能会表现得像固体点。对于溶液(尤其是高分子溶液),常用到以下几种黏度。相对黏度(又称黏度比)是溶液(或分散相)的黏度η与溶剂(或连续相)的黏度η0之比,即:增比黏度(又称比黏度)是溶液(或分散相)的黏度η与溶剂(或连续相)的黏度η0之差被溶剂(或连续相)黏度的η0除得之商,即:比浓黏度(又称换算黏度或黏度数)是单位浓度的溶液(或分散相)的增比浓度,即:比浓对数黏度(又称对数黏度)是相对黏度的自然对数被溶液(或分散相)的浓度除得之商,即:特性黏度(又称极限黏度)是浓度趋于零时比浓黏度的极限值,即:在流体流动中所产生的黏性力不能与在固体中对剪切、压缩或拉伸产生的回复弹性力相混淆。后者的应力是与形变量成比例的,而在流体中与形变随时间的变化率成比例。然而,许多液体(包括水)在受到突然的压力后,反应像弹性固体。相反,甚至在任意应力较小,许多“固体”(即使花岗岩)将像液体一样流动,虽然很慢。这样的材料,具有弹性(反应变形)和黏度(以变形率的反应),即黏弹性。黏弹性固体可能表现出压力黏性和体积黏性。拉伸黏度的剪切和体积黏度,描述了一个固体弹性材料的伸长率的反应的一个线性组合,它广泛用于表征聚合物。在地质学中,具有黏性变形至少三倍于弹性变形的稀土材料有时被称为流变体。黏度的国际单位制是帕斯卡·秒,有时也使用以法国生理学家吉恩·路易斯·泊肃叶命名的泊。十个泊等于一个帕斯卡·秒。实际上,有两个量被称为黏度。上面所定义的量有时被称为动态黏度、绝对黏度或简单黏度(来区别其他的量),但通常也称为黏度。另外一种量称为运动黏度(用符号ν表示),它是流体的黏度与密度的比值:运动黏度是在重力影响下,衡量抵制液体流动的量。它的测量装置通常被称为毛细管黏度计——基本上是底部有一个狭窄管的有刻度的筒。当两种体积相同的液体放置在相同的毛细管中,并且可以在重力的影响下流动,那么在流过管道时,黏性流体花费的时间比少黏性流体花费的时间要长。运动黏度的SI单位是平方米/秒,没有特别的名字。由于这个单位太大,很少使用。一个更常见的运动黏度单位是平方厘米/秒,这是考虑到以爱尔兰的数学家和动物学家乔治·加布里埃尔·斯托克斯(1819~1903)而命名的斯托克斯(St)。这个单位也有点大,所以最常见的单位可能是平方毫米/秒,或厘司。从日常经验中,我们可以知道,粘度随着温度的变化而变化。如,蜂蜜和糖浆在加热时更容易流动;在冬季天气变冷时,发动机润滑油和液压液明显粘结变厚,严重影响汽车及其他机械的性能。一般来说,一种简单液体的粘度随温度的升高而下降(反之亦然),随着温度的升高,液体中分子中运动的平均速度增大,与临近分子的接触时间变短。确切地说,两个变量的变化是非线性的,当有相变发生时,变量发生突变。
加热时,液体更易流动,气体变稠。气体的粘度随温度的升高而增大,且粘度正比于温度的平方根。这是由于在更高的温度下,增大了分子间碰撞的频率。因为气体中的分子大部分时间是在空间自由运动,任何增加一个分子与另一个分子接触时间的因素,都会降低分子作为一个整体参与协调运动的能力。这类分子彼此发生碰撞,运动变得更加的杂乱无章,充分解释了气体粘度对温度的依赖性。黏度与温度的关系非常密切,在常温常压下,当温度变化1℃时,液体的黏度变化达百分之几至十几,气体约为千分之几,例如在(20±1)℃时有粘度与温度并不成线性关系,它与温度范围有关,温度越低,粘温关系越密切。又如,在0℃,20℃及100℃下,当ΔT=±1℃时,水的粘度变化,分别约为3.4%,2.5%及1.1%。此外,气体与液体的粘度温度变化的规律完全相反,气体的粘度随温度升高而增大,因为气体的粘性是由于动量传递所致,当温度升高时,分子的热运动加剧,动量增大,流层间的内摩擦加剧,所以黏度增大。而液体的粘性来自分子引力,温度升高,分子间的距离加大,分子引力减小,内摩擦减弱,所以粘度减小。粘度随温度变化的程度还与许多因素有关,例如物质的化学组成、粘流活化能、黏度大小等,例如通常液体的粘度越大,液体的粘度随温度的变化越大。因为粘度是如此地依赖于温度,所以在描述粘度时离不开温度。气体的粘度随压强的增大而增大,粘度与压强的关系可由公式(
η
=
η
1
f
{displaystyle eta =eta _{1}f}
)求得。液体粘度随压力的增加而增大,但远不如气体的粘度与压力的关系之密切。在500MPa(即5000大气压)下,液体粘度与压力的关系用公式(
η
=
η
1
exp
(
α
p
)
{displaystyle eta =eta _{1}exp {(alpha p)}}
)表示。普通液体在0.1MPa附近,每增加0.1MPa压力时,黏度增加约0.1%~0.3%。对于黏度η>1.2mPa·s的液烃,可用库泽尔式来计算高压下的黏度值。测量黏度的有各种黏度计和流变仪。流变仪用于流体的黏度不能用单个黏度值定义的情况 ,因此要比黏度计需要更多的参数设定和测量。封闭的流体温度控制是准确测量所必备的,特别是像润滑油的黏度,仅变化5℃可翻倍。一些流体,在较宽的剪切速率范围内,黏度是恒定的(牛顿流体)。没有恒定黏度的流体(非黏度流体)不能由单一的数字来描述。非牛顿流体表现出剪切应力和剪切速率之间各种不同的相关性。目前用得最广泛的主要有毛细管黏度计,旋转黏度计,落球黏度计和锥板黏度计等几种,这些仪器可以测量10-2~1012泊的黏度。各种黏度计所适应的剪切速率范围不同。挤出式毛细管黏度计通常可在10-1~106与实际加工条件非常接近的剪切速率范围使用;转动式黏度计可用于剪切速率在10-3~10的范围,而球式黏度计只能在很低的剪切速率范围内使用。空气的粘度主要取决于温度。在15 °C时,空气的粘度是1.81×10−5 kg/(m·s), 18.1 μPa.s o或1.81×10−5 Pa.s。在15 °C时空气的运动粘度是1.48×10−5 m2/s或14.8 cSt。在25 °C时,粘度是18.6 μPa.s和运动粘度是15.7 cSt。人们能从气体粘度计算器上得到气体粘度与温度的函数。其中A=2.414 × 10−5 Pa·s ; B = 247.8 K ; and C = 140 K。这一术语悬浮液描述的是保持着流动性的液体和固体颗粒的混合物。浆料的粘度可以被描述为相对的液相粘度:在以上公式中,μs和μl分别是泥浆和液体的动力粘度(PA·S),μr是相对粘度(无量纲)根据不同的固体颗粒的大小和浓度,存在几个模型,其描述相对粘度的固体颗粒的并具有体积分数ɸ功能。在极低浓度的细颗粒的情况下,爱因斯坦方程可以使用:在高浓度的情况下,由Guth and Simha提出修改后的方程,其考虑固体颗粒之间的相互作用,这个方程的进一步改进由托马斯从实证数据的拟合中提出。其中A = 0.00273 and B = 16.6在非常高的浓度下,另一个经验方程通过Kitano 等人提出。:其中对于光滑的球形颗粒A = 0.68。在非晶材料的粘性流动(如玻璃和熔体)是一个热激活过程:其中Q是活化能, T是温度, R为摩尔气体常数和A近似为一常。在非晶材料的粘性流动的特点与阿伦尼乌斯式行为有偏差:在高温下(在液体状态),Q变化从一个在较低温度下(在玻璃态)的较高值QH到一个较高温度下的较低值QL。根据这一变化,来划分非晶材料。非晶材料的脆性是数值特征的多雷米的脆弱性比:其中,强硬的材料的RD < 2而脆性材料的RD ≥ 2。非晶材料的粘度由由一个二指数方程相当精确地描述:其中包括的常量A1, A2, B, C和D与非晶材料的结合键的热力学参数相关。如果温度在玻璃化转变温度附近,Tg,这个方程可以通过Vogel-Fulcher-Tammann(VFT)equation近似方程(VFT)表示。如果温度低于玻璃化转变温度,T ≪ Tg,然后两个指数方程简化为一个阿伦尼乌斯型方程:并且:其中Hd是断键的形成焓(称为configuron S)和Hm 是其运动焓。 当温度低于玻璃化转变温度,T < Tg,其粘度的活化能高因为非晶材料在玻璃态和大部分结合键是完整的。如果温度是高度以上的玻璃化转变温度,T ≫ Tg,两个指数方程也简化了一个阿伦尼乌斯型方程:而且:当温度高于玻璃化转变温度,T > Tg,粘度的活化能低,因为非晶材料被熔化及其大部分结合键断裂,这有利于流动。下表列出了一些牛顿流体的运动粘度:[温度*这些材料是高浓度非牛顿型的。注:高浓度意味着更厚的物质。
相关
- 鼻咽癌鼻咽癌(NPC, Nasopharyngeal Carcinoma)是一种发生于鼻咽腔或上咽喉部的癌症。在世界的某些地区,例如东南亚和非洲,患此病的人比其他地方多,过去认为是主要是膳食的影响,目前倾向
- 原核翻译启动原核翻译(Prokaryotic translation)是指原核生物细胞中信使RNA被70S核糖体翻译为蛋白质的过程。该过程可分为起始、延伸、终止与再循环四个主要步骤。原核生物的翻译起始阶段
- 冰雹雹或冰雹(英语:Hail)属于突发性天然灾害,是一种固态降水物,是圆形或圆锥形的冰块,由透明层和不透明层相间组成;直径一般为 5~50毫米,大的则可达到10厘米以上。冰雹是在对流云所形成的
- 斯塔提乌斯斯塔提乌斯(英语:Statius),(45年-96年)。古罗马著名的诗人之一,出生于那不勒斯,其父即凭借诗歌而闻名于世。他曾创作了大量反映古希腊神话的相关史诗作品而在古罗马闻名遐迩,他的作品
- G蛋白G蛋白(英语:G Protein)是指鸟苷酸结合蛋白(guanine nucleotide-binding proteins)。它含有一个鸟苷酸结合结构域,由α、β、γ三个亚基组成。激活状态下的G蛋白可以激活腺苷酸环化
- 米兰公国米兰公国是1395年至1797年间于意大利北部的一个国家。公国虽然是神圣罗马帝国的一部分,但却是一个分权实体,公国先后由数个王朝统治,多数是意大利以外的势力。虽然公国的领土多
- 六边形在几何学中,六边形是指有六条边和六个顶点的多边形,其内角和为720度。六边形有很多种,其中对称性最高的是正六边形。正六边形是一种可以使用尺规作图的六边形,也可以拼满平面,因
- 聚酯聚酯(英语:Polyester)是一类在其主链上含有酯基官能团的聚合物。虽然聚酯有很多种,但是“聚酯”一词通常指的是聚对苯二甲酸乙二酯(PET)。聚酯纤维是由饱和的二元酸与二元醇通过缩
- 圣米歇尔山圣米歇尔山(法语:Mont-Saint-Michel,天主教中文称“圣弥额尔山”)是法国诺曼底附近,距海岸约1公里的岩石小岛,为法国旅游胜地,也是天主教徒的朝圣地,山顶建有著名的圣弥额尔山隐修院
- 印度时报《印度时报》是印度最老、也是发行量最大的英文报纸,创办于1838年,初名《孟买时报》,1861年5月18日改为现名。它在新德里、孟买、阿默达巴德出版,总部设于孟买。该报内容较为严