肢解国际象棋盘问题(英语:mutilated chessboard problem)属于平铺拼图问题(英语:Tiling puzzle),最早是由Max Black(英语:Max Black)在1946年的《Critical Thinking》中提出。后来数学家所罗门·格伦布(1954年)及马丁·加德纳(在杂志《科学人》中的专栏《Mathematical Games》中)都有讨论到此问题。问题:“假设一个标准的8x8格国际象棋棋盘,移除对角的2个方块,余下62个方块。可不可以用31个2x1格骨牌来盖上余下方块呢?”
大部分讨论此问题的文献是在概念上说明此问题,计算机科学家约翰·麦卡锡认为这问题对于自动证明系统而言是很难的问题。若使用归结系统,其解的困难度是指数等级。
肢解国际象棋盘问题是无解的。国际象棋盘上的2x1格骨牌一定会占据一个白色方格及一个黑色方格,因此被骨牌填满的位置,白色方格及黑色方格的个数相同。在肢解国际象棋盘问题中,若移除的二个是白色方格,有32个黑色方格及30个白色方格要填满,两者数量不同,无法用2x1格骨牌填满。若移除的二个是黑色方格,有30个黑色方格及32个白色方格要填满,还是无法用2x1格骨牌填满。
只要国际象棋盘上移除二个同色的方格,相同的方式可以证明,移除方格后的棋盘无法用2x1格骨牌填满。不过若填除的是二个不同颜色的方格,一定可以用2x1格骨牌填满,这个结果称为高莫利定理(Gomory's theorem),得名自数学家拉尔夫·爱德华·高莫利(英语:Ralph E. Gomory),他在1973年提出的证明。高莫利定理可以用棋盘组成格子图(英语:grid graph)的哈密顿图来证明,移去二个不同色的方格会将哈密顿图切成二部分,每个部分的黑色方格及白色方格都一样多,两部分都可以用2x1格骨牌填满。