复小波变换或复小波转换(Complex Wavelet Transform)是一个离散小波转换(DWT)的复数形式延伸。
它是一个二维小波变换,它提供多分辨率,稀疏表示,以及图像结构的有益特性。另外,他还提供其幅度的高度移位不变性。
在图像处理中使用复小波最初始于1995年,由 J.M. Lina 和 L. Gagnon用多贝西正交滤波器银行的框架。然后剑桥大学剑桥大学教授Prof. Nick Kingsbury 归纳于1997年。在计算机视觉的区域中,通过利用可见的内文的概念,可以快速地集中于候选区域,其中可以发觉到有兴趣的项目,然后通过复小波变换计算那些被选定的特定区域。这些附加且非必要的特征,在精确的检测和识别更小的物体非常有用。同样地,复小波变换可以应用于类似检测皮质的活化素,另外的时间独立成分分析(TICA)可用于提取底层独立来源,其数量由贝叶斯信息准则确定。然而,复小波变换的一个缺点是这种变换是,相较于可分离的离散小波转换(separable DWT),它显示出 and tree )。
如果使用的其中一个滤波器被特别设计与其他的不同,则有可能一边的离散小波转换会得到一个实数的系数,而另外一边则会得到一个虚的系数。
两个这种冗余为分析提供了额外的资讯,但使用了额外的计算能力为代价。它也提供了近似移动不变性(不像离散小波转换),但仍允许信号的完美重建。
而滤波器的设计对这个转换的运算正确性而言特别重要,以及其必须的特性要有: