噪声的颜色

✍ dations ◷ 2025-12-06 14:11:06 #噪音,噪声,编码

噪声虽作为一个随机信号,仍然具有统计学上的特征属性。功率谱密度(功率的频谱分布)即是噪声的特征之一,从而人们可以通过它来区分不同类型的噪声。在一些噪声扮演着重要角色的研究领域中(例如声学、电子工程和物理),这种噪声分类方法通常会给予不同的功率谱密度一个不同的“色彩”称谓,也就是说不同种类的噪声会被命名为不同的颜色。但是在不同的专业领域间,或许会有不同的术语称谓。

在噪声的颜色分类中,很多定义都假设了噪声信号在全频域都有分布,并且在单位频域内的谱密度正比于 1 / f β {\displaystyle 1/f^{\beta }\,} 噪声,它的频谱在对数空间内是平坦的,也就是说在等比例宽度的频带内具有相等的功率。 例如在40赫兹至60赫兹的区间内,粉红噪声具有和它在4千赫兹至6千赫兹频带内相等的功率。由于人类对声音的听觉与声波频率的比例有关:在成比例的频率区间内人类听力所感受到的能量是一样的,而与频率的绝对高低无关(在距离和持续时间相同的情形下,40-60赫兹与4000-6000赫兹对人类听觉来说没有差别。);如此在所有双倍的频率区间内人类听觉都感受到相同的能量,从而在电声工程中粉红噪声经常被用作一种参考信号,这样人类的听觉系统在所有的频率上所接收到的声音幅度都是近似相等的。粉红噪声和白噪声在频谱上的区别是,频率提高为2倍时,它的谱密度都会降低3dB。基于这个原因,粉红噪声的谱密度是随频率增加而呈1/衰减的,因而经常被称作1/噪声。

由于在对数坐标下的频带在频谱的低频端(直流)和高频端都可以有无限多个,任何具有有限能量的频谱在低频段和高频端所具有的能量都不能高于粉红噪声。粉红噪声是仅此一种具有这种性质的幂律噪声,因为比它更陡的幂律噪声在低频端经过积分后功率将变为无穷大,而比它更平坦的幂律噪声在高频端经过积分后功率也将变为无穷大。

红噪声又称作布朗噪声,它与粉红噪声类似,但当频率提高为2倍时,它的谱密度都会降低6dB,也就是说红噪声的谱密度是随频率增加而呈 1 / f 2 {\displaystyle 1/f^{2}\,} 衰减的。需要注意这种噪声的频域不能包括直流(即频率为零),否则经过积分后得到的功率将为无穷大。这种噪声也可以通过对布朗运动进行算法后得到,因此它在英文中虽然有时被称作Brown noise,在这里Brown是布朗运动(Brownian motion)的简称,而不应理解为“棕”这种颜色。用颜色表示时它被称作红噪声,这是因为 1 / f {\displaystyle 1/f\,} 介于 1 / f 2 {\displaystyle 1/f^{2}\,} 1 / f 0 {\displaystyle 1/f^{0}\,} (平坦)之间,而粉红则介于红色与白色之间。它有时也被称作“随机行走”噪声或“醉汉行走”噪声。

蓝噪声又称作天蓝噪声,它随着频率提高2倍谱密度提高3dB,从而频谱与 f {\displaystyle f\,} 成正比(在有限带宽内)。在计算机图形学中,蓝噪声这一概念有时还泛指任何具有最小的低频分量并且频谱中没有明显峰值出现的噪声。蓝噪声在对图像进行抖动处理中很有用;而也正是这一原因,视网膜细胞的排列方式也呈现出蓝噪声的特征。

紫噪声随着频率提高2倍谱密度提高6dB,从而频谱与 f 2 {\displaystyle f^{2}\,} 成正比(在有限带宽内)。

灰噪声是在某一特定频率范围内遵循音质等响度曲线变化的随机粉红噪声,这种噪声能够使人类听觉系统在全频率上感受到同样的响度。这一点和粉红噪声存在区别:粉红噪声在对数尺度下的频带内具有相等的能量,但人耳对此在不同频率下感觉到的响度是不一样的,这是受到人类听觉等响度曲线的影响。

相关

  • 柯林武德罗宾·乔治·柯林武德(英语:Robin George Collingwood 1889年2月22日-1943年1月9日)英国哲学家、历史学家、考古学家,以哲学著作以及死后发表的《历史的观念》(1943年)而知名。
  • 四氢化萘四氢化萘、四氢萘的分子式为C10H12,由一个苯环和一个环己烷并合而成,可看作萘中一个环被完全加氢得到的产物。四氢化萘的合成方法有:人们就如何将萘氢化为四氢化萘做了大量的工
  • 洛杉矶公羊American Football League(英语:American Football League (1936)) (1936) 国家橄榄球联盟 (1937–至今)联盟冠军 (3)联会冠军 (7)分区冠军 (20)洛杉矶公羊(英语:Los Angles Rams
  • 苏共中央第一书记苏联共产党中央委员会总书记(俄语:Генеральный секретарь ЦК КПСС)是苏联共产党领袖的头衔。在俄国历史上,这个职位往往是苏联最高领导人的代名词。
  • cat (Unix)cat是unix系统下用来查看文件连续内容用的指令,字面上的含意是“concatenate”(连续)的缩写。除了用来作为显示文件内容外,cat指令也可用于标准流上的处理,如将显示的消息转入
  • 360相关争议对奇虎360的争议是指奇虎360产品在众多事件上存有争议及轶闻事件。2010年2月2日,瑞星公司发布《瑞星揭露黑幕:奇虎360给用户装“后门”》的文章,发现360产品在安装进用户电脑时
  • 2019年电影下表列出了2019年上映的电影。2019年全球票房最高的电影如下:获国际电影制片人协会联合会认可的2018年部分电影节名单。
  • 弗雷德·金尼曼弗雷德·金尼曼(英语:Fred Zinnemann,1907年4月29日-1997年3月14日)是一位奥地利裔美国电影导演,两次获得学院奖最佳影片奖、两次获得导演奖,一次获得纪录短片奖及6次提名,3次获得英
  • 张伟 (羽毛球运动员)张伟(1987年2月2日-)是中国男子羽毛球运动员,2004年中国全国羽毛球锦标赛男双冠军、2005年亚青赛获得三个银牌、2006年亚锦赛混双铜牌以及2007年世大运混合团体银牌和男双铜牌。
  • CyArkCyArk是在美国加利福尼亚州注册的501(c)(3)免税、非营利、慈善机构。该机构的网站介绍自己是“世界遗产的数字档案馆,主要目的是用于教育和保护”,机构宗旨为“依靠激光扫描(英