首页 >
参数估计
✍ dations ◷ 2025-04-26 17:28:31 #参数估计
估计理论是统计学和信号处理中的一个分支,主要是通过测量或经验数据来估计概率分布参数的数值。这些参数描述了实质情况或实际对象,它们能够回答估计函数提出的问题。例如,估计投票人总体中,给特定候选人投票的人的比例。这个比例是一个不可观测的参数,因为投票人总体很大;估计值建立在投票者的一个小的随机采样上。又如,雷达的目的是物体(飞机、船等)的定位。这种定位是通过分析收到的回声(回波)来实现的,定位提出的问题是“飞机在哪里?”为了回答这个问题,必须估计飞机到雷达之间的距离。如果雷达的绝对位置是已知的,那么飞机的绝对位置也是可以确定的。在估计理论中,通常假定信息隐藏在包含噪声的信号中。噪声增加了不确定性,如果没有不确定性,那么也就没有必要估计了。有非常多的领域使用参数估计理论。这些领域包括(当然不局限于以下列出的领域):测量参数包含噪声或者其他不确定性。通过统计概率,可以求得最优化的解,用来从数据中提取尽可能多的信息。估计理论的全部目的都是获取一个估计函数,最好是一个可以实现的估计函数。估计函数输入测量数据,输出相应参数的估计。我们通常希望估计函数能最优,一个最优的估计意味着所有的信息都被提取出来了;如果还有信息没有提取出来,那就意味着它不是最优的。一般来说,求估计函数需要三步:当实现一个估计器之后,实际的数据有可能证明推导出估计器的模型是不正确的,这样的话就需要重复上面的过程重新寻找估计器。不能实现的估计器需要抛弃,然后开始一个新的过程。总的来说,估计器根据实际测量的数据预测物理模型的参数。为了建立一个模型,需要知道几项统计“因素”。为了保证预测在数学上是可以追踪的而不是仅仅基于“内心感受”来说这是必需的。第一个是从大小为
N
{displaystyle N}
的随机矢量中取出的统计采样,将它们放到一个矢量中,第二,有相应的
M
{displaystyle M}
参数它需要根据概率密度函数(pdf)或者概率聚集函数(:en:probability mass function)(pmf)建立参数本身还可能有一个概率分布(Bayesian statistics),需要定义epistemic probability模型形成之后的目标就是预测参数,通常表示为
θ
^
{displaystyle {hat {mathbf {theta } }}}
,其中“hat”表示预测值。一个普通的估计器是最小均方误差(MMSE)估计器,它利用了参数估计值与实际值之间的误差作为优化的基础。在最小均方误差估计器中误差进行取平方、最小化。以下是一些相关的估计函数以及相关的主题让我们来看一个接收到的
N
{displaystyle N}
个独立采样点的离散信号
x
[
n
]
{displaystyle x}
,它由一个直流增益
A
{displaystyle A}
和已知方差为
σ
2
{displaystyle sigma ^{2}}
(例如,
N
(
0
,
σ
2
)
{displaystyle {mathcal {N}}(0,sigma ^{2})}
)的叠加白噪声
w
[
n
]
{displaystyle w}
组成。由于方差已经知道,所以仅有的未知参数就是
A
{displaystyle A}
。于是信号的模型是两个可能的估计器是:这两个估计器都有一个平均值
A
{displaystyle A}
,这可以通过代入每个估计器的期望得到和在这一点上,这两个估计器看起来是一样的。但是,当比较方差部分的时候它们之间的不同就很明显了。和看起来采样平均是一个更好的估计器,因为方差部分
N
→
∞
{displaystyle Nto infty }
趋向于0。使用最大似然估计继续上面的例子,噪声在一个采样点
w
[
n
]
{displaystyle w}
的概率密度函数(pdf)是这样
x
[
n
]
{displaystyle x}
的概率变为(
x
[
n
]
{displaystyle x}
可以认为是
N
(
A
,
σ
2
)
{displaystyle {mathcal {N}}(A,sigma ^{2})}
)由于相互独立,
x
{displaystyle mathbf {x} }
的概率变为概率密度函数取自然对数于是最大似然估计器是对数最大似然函数取一阶导数并且将它赋值为0这就得到最大似然估计器它是一个简单的采样平均。从这个例子中,我们发现对于带有固定未知直流增益的AWGN的
N
{displaystyle N}
个采样点来说采样平均就是最大似然估计器。为了找到采样平均估计器的Cramér-Rao下限(CRLB),需要找到Fisher information数从上面得到取二阶导数发现负的期望值是无关紧要的(trivial),因为它现在是一个确定的常数−
E
[
∂
2
∂
A
2
ln
p
(
x
;
A
)
]
=
N
σ
2
{displaystyle -mathrm {E} left={frac {N}{sigma ^{2}}}}最后,将Fisher information代入得到将这个值与前面确定的采样平均的变化比较显示对于所有的
N
{displaystyle N}
和
A
{displaystyle A}
来说采样平均都是等于Cramér-Rao下限。采样平均除了是最大似然估计器之外还是最小变化无偏估计器(MVUE)。这个直流增益 + WGN的例子是Kay的统计信号处理基础中一个例子的再现。
相关
- 不可逆拮抗剂不可逆拮抗剂是一种永久与受体结合的拮抗剂。它要么与活性位点形成共价键,要么结合得很牢固,以至于离解速率在相关时间跨度内可视为零。这使受体永久失活,并很快被内化、回收。
- 黄油猫悖论黄油猫悖论(英语:Buttered cat paradox),是把两种趣谈组合而成的恶搞悖论,该常识为:这个悖论出在,你把黄油吐司没有涂上黄油的一面黏着猫的背部之时。依照以上两条定律,猫无法用脚着
- 化学平衡化学平衡(英语:Chemical equilibrium)是指在宏观条件一定的可逆反应中,化学反应正逆反应速率相等,反应物和生成物各组分浓度不再改变的状态。可用ΔrGm=ΣνΑμΑ=0判断,μA是反
- 尢尢部,为汉字索引里为部首之一,康熙字典214个部首中的第四十三个(三划的则为第十四个)。就繁体和简体中文中,尢部归于三划部首。尢部通常是从下、左、右方均可为部字,且无其他部首
- 汉斯·克雷布斯汉斯·阿道夫·克雷布斯(德语:Hans Adolf Krebs,1900年8月25日-1981年11月22日),医生、生物化学家,原籍德国,后移民英国。克雷布斯在代谢方面有两个重大发现:尿素循环和三羧酸循环。
- 汪灏汪灏可能指下列人物:
- 美国宪法宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
- 鉴真鉴真(688年-763年6月25日),唐朝僧人,俗姓淳于,江苏扬州江阳县人,律宗南山宗传人,日本佛教祖师。鉴真和尚是日本建筑和医学的发明者。唐武后垂拱四年(688年),鉴真出生于扬州,俗姓淳于。70
- 神经节苷脂神经节苷脂(英语:Ganglioside;又称唾液酸糖鞘脂),是含有唾液酸的糖鞘脂。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/l/o/e,au,n,m,人名体征
- 航天记录这是一份航天记录的列表。这里的大部分记录都与载人航天有关,但是少数无人航天和载犬航天也被包括在这个列表里。男性:瓦列里·波利亚科夫 , 1992年1月8日, 437.7天, 这个记录