首页 >
参数估计
✍ dations ◷ 2025-02-23 15:19:06 #参数估计
估计理论是统计学和信号处理中的一个分支,主要是通过测量或经验数据来估计概率分布参数的数值。这些参数描述了实质情况或实际对象,它们能够回答估计函数提出的问题。例如,估计投票人总体中,给特定候选人投票的人的比例。这个比例是一个不可观测的参数,因为投票人总体很大;估计值建立在投票者的一个小的随机采样上。又如,雷达的目的是物体(飞机、船等)的定位。这种定位是通过分析收到的回声(回波)来实现的,定位提出的问题是“飞机在哪里?”为了回答这个问题,必须估计飞机到雷达之间的距离。如果雷达的绝对位置是已知的,那么飞机的绝对位置也是可以确定的。在估计理论中,通常假定信息隐藏在包含噪声的信号中。噪声增加了不确定性,如果没有不确定性,那么也就没有必要估计了。有非常多的领域使用参数估计理论。这些领域包括(当然不局限于以下列出的领域):测量参数包含噪声或者其他不确定性。通过统计概率,可以求得最优化的解,用来从数据中提取尽可能多的信息。估计理论的全部目的都是获取一个估计函数,最好是一个可以实现的估计函数。估计函数输入测量数据,输出相应参数的估计。我们通常希望估计函数能最优,一个最优的估计意味着所有的信息都被提取出来了;如果还有信息没有提取出来,那就意味着它不是最优的。一般来说,求估计函数需要三步:当实现一个估计器之后,实际的数据有可能证明推导出估计器的模型是不正确的,这样的话就需要重复上面的过程重新寻找估计器。不能实现的估计器需要抛弃,然后开始一个新的过程。总的来说,估计器根据实际测量的数据预测物理模型的参数。为了建立一个模型,需要知道几项统计“因素”。为了保证预测在数学上是可以追踪的而不是仅仅基于“内心感受”来说这是必需的。第一个是从大小为
N
{displaystyle N}
的随机矢量中取出的统计采样,将它们放到一个矢量中,第二,有相应的
M
{displaystyle M}
参数它需要根据概率密度函数(pdf)或者概率聚集函数(:en:probability mass function)(pmf)建立参数本身还可能有一个概率分布(Bayesian statistics),需要定义epistemic probability模型形成之后的目标就是预测参数,通常表示为
θ
^
{displaystyle {hat {mathbf {theta } }}}
,其中“hat”表示预测值。一个普通的估计器是最小均方误差(MMSE)估计器,它利用了参数估计值与实际值之间的误差作为优化的基础。在最小均方误差估计器中误差进行取平方、最小化。以下是一些相关的估计函数以及相关的主题让我们来看一个接收到的
N
{displaystyle N}
个独立采样点的离散信号
x
[
n
]
{displaystyle x}
,它由一个直流增益
A
{displaystyle A}
和已知方差为
σ
2
{displaystyle sigma ^{2}}
(例如,
N
(
0
,
σ
2
)
{displaystyle {mathcal {N}}(0,sigma ^{2})}
)的叠加白噪声
w
[
n
]
{displaystyle w}
组成。由于方差已经知道,所以仅有的未知参数就是
A
{displaystyle A}
。于是信号的模型是两个可能的估计器是:这两个估计器都有一个平均值
A
{displaystyle A}
,这可以通过代入每个估计器的期望得到和在这一点上,这两个估计器看起来是一样的。但是,当比较方差部分的时候它们之间的不同就很明显了。和看起来采样平均是一个更好的估计器,因为方差部分
N
→
∞
{displaystyle Nto infty }
趋向于0。使用最大似然估计继续上面的例子,噪声在一个采样点
w
[
n
]
{displaystyle w}
的概率密度函数(pdf)是这样
x
[
n
]
{displaystyle x}
的概率变为(
x
[
n
]
{displaystyle x}
可以认为是
N
(
A
,
σ
2
)
{displaystyle {mathcal {N}}(A,sigma ^{2})}
)由于相互独立,
x
{displaystyle mathbf {x} }
的概率变为概率密度函数取自然对数于是最大似然估计器是对数最大似然函数取一阶导数并且将它赋值为0这就得到最大似然估计器它是一个简单的采样平均。从这个例子中,我们发现对于带有固定未知直流增益的AWGN的
N
{displaystyle N}
个采样点来说采样平均就是最大似然估计器。为了找到采样平均估计器的Cramér-Rao下限(CRLB),需要找到Fisher information数从上面得到取二阶导数发现负的期望值是无关紧要的(trivial),因为它现在是一个确定的常数−
E
[
∂
2
∂
A
2
ln
p
(
x
;
A
)
]
=
N
σ
2
{displaystyle -mathrm {E} left={frac {N}{sigma ^{2}}}}最后,将Fisher information代入得到将这个值与前面确定的采样平均的变化比较显示对于所有的
N
{displaystyle N}
和
A
{displaystyle A}
来说采样平均都是等于Cramér-Rao下限。采样平均除了是最大似然估计器之外还是最小变化无偏估计器(MVUE)。这个直流增益 + WGN的例子是Kay的统计信号处理基础中一个例子的再现。
相关
- 锡诺普的第欧根尼锡诺普的第欧根尼(Διογένης)(亦翻译为戴奥基尼斯或狄奥根尼),古希腊哲学家,犬儒学派的代表人物。活跃于公元前4世纪,相传于公元前413年生于锡诺普(Σινώπη,现属土耳其),相
- 路德维希·维特根斯坦路德维希‧约瑟夫‧约翰‧维特根斯坦(德语:Ludwig Josef Johann Wittgenstein,又译维特根施泰因、维特根斯坦;1889年4月26日-1951年4月29日)是一名奥地利哲学家。他生于奥地利,后入
- 印欧语系印欧语系(英语:Indo-European languages)是世界上的一个语系。欧洲、美洲、南亚和大洋洲的大部分国家都采用印欧语系的语言作为母语或官方语言。印欧语系包括443种(SIL统计)语言
- 安全眼镜眼镜是镶嵌在框架内的透镜镜片,戴在眼睛前方,以改善视力、保护眼睛或作装饰打扮用途。亦有特制眼镜供观看3D立体影像或虚拟真实影像。眼镜可矫正多种视力问题,包括近视、远视、
- 塞雷拉基因组塞雷拉基因组(Celera Genomics,NYSE:CRA,专门于遗传定序以及相关技术。总部位于马里兰州。成立于1998年,克莱格·凡特与珀金-埃尔默公司(Perkin-Elmer Corporation)为主要建立者之
- 文观部式文化观光部2000年式,亦称国语罗马字表记法(朝鲜语:국어의 로마자 표기법/國語의 로마字表記法 Gug-eoui lomaja pygogibeob)为现在韩国所使用的韩国语(谚文)拉丁文字转写规则。200
- 卡图萨县卡图萨县(Catoosa County)是位于美国佐治亚州西北部的一个县,面积421平方公里,县治灵戈尔德。根据2000年美国人口普查,共有人口53,282。卡图萨县成立于1853年12月5日。历史 | 经
- 昂布瓦斯城堡昂布瓦斯城堡(法语:Château d'Amboise)是位于法国卢瓦尔河的昂布瓦斯的一座法式城堡。昂布瓦斯城堡的始建年份已经不可考究,只知道城堡的雏型可追溯至罗马时代。14世纪起,瓦卢瓦
- 狮身人面像狮身人面像(阿拉伯语:أبو الهول, 国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","
- 交通事故死亡率本表中有关各国交通事故死亡率的数据主要来自于世界卫生组织2015.年的报告。