首页 >
参数估计
✍ dations ◷ 2025-08-02 02:35:19 #参数估计
估计理论是统计学和信号处理中的一个分支,主要是通过测量或经验数据来估计概率分布参数的数值。这些参数描述了实质情况或实际对象,它们能够回答估计函数提出的问题。例如,估计投票人总体中,给特定候选人投票的人的比例。这个比例是一个不可观测的参数,因为投票人总体很大;估计值建立在投票者的一个小的随机采样上。又如,雷达的目的是物体(飞机、船等)的定位。这种定位是通过分析收到的回声(回波)来实现的,定位提出的问题是“飞机在哪里?”为了回答这个问题,必须估计飞机到雷达之间的距离。如果雷达的绝对位置是已知的,那么飞机的绝对位置也是可以确定的。在估计理论中,通常假定信息隐藏在包含噪声的信号中。噪声增加了不确定性,如果没有不确定性,那么也就没有必要估计了。有非常多的领域使用参数估计理论。这些领域包括(当然不局限于以下列出的领域):测量参数包含噪声或者其他不确定性。通过统计概率,可以求得最优化的解,用来从数据中提取尽可能多的信息。估计理论的全部目的都是获取一个估计函数,最好是一个可以实现的估计函数。估计函数输入测量数据,输出相应参数的估计。我们通常希望估计函数能最优,一个最优的估计意味着所有的信息都被提取出来了;如果还有信息没有提取出来,那就意味着它不是最优的。一般来说,求估计函数需要三步:当实现一个估计器之后,实际的数据有可能证明推导出估计器的模型是不正确的,这样的话就需要重复上面的过程重新寻找估计器。不能实现的估计器需要抛弃,然后开始一个新的过程。总的来说,估计器根据实际测量的数据预测物理模型的参数。为了建立一个模型,需要知道几项统计“因素”。为了保证预测在数学上是可以追踪的而不是仅仅基于“内心感受”来说这是必需的。第一个是从大小为
N
{displaystyle N}
的随机矢量中取出的统计采样,将它们放到一个矢量中,第二,有相应的
M
{displaystyle M}
参数它需要根据概率密度函数(pdf)或者概率聚集函数(:en:probability mass function)(pmf)建立参数本身还可能有一个概率分布(Bayesian statistics),需要定义epistemic probability模型形成之后的目标就是预测参数,通常表示为
θ
^
{displaystyle {hat {mathbf {theta } }}}
,其中“hat”表示预测值。一个普通的估计器是最小均方误差(MMSE)估计器,它利用了参数估计值与实际值之间的误差作为优化的基础。在最小均方误差估计器中误差进行取平方、最小化。以下是一些相关的估计函数以及相关的主题让我们来看一个接收到的
N
{displaystyle N}
个独立采样点的离散信号
x
[
n
]
{displaystyle x}
,它由一个直流增益
A
{displaystyle A}
和已知方差为
σ
2
{displaystyle sigma ^{2}}
(例如,
N
(
0
,
σ
2
)
{displaystyle {mathcal {N}}(0,sigma ^{2})}
)的叠加白噪声
w
[
n
]
{displaystyle w}
组成。由于方差已经知道,所以仅有的未知参数就是
A
{displaystyle A}
。于是信号的模型是两个可能的估计器是:这两个估计器都有一个平均值
A
{displaystyle A}
,这可以通过代入每个估计器的期望得到和在这一点上,这两个估计器看起来是一样的。但是,当比较方差部分的时候它们之间的不同就很明显了。和看起来采样平均是一个更好的估计器,因为方差部分
N
→
∞
{displaystyle Nto infty }
趋向于0。使用最大似然估计继续上面的例子,噪声在一个采样点
w
[
n
]
{displaystyle w}
的概率密度函数(pdf)是这样
x
[
n
]
{displaystyle x}
的概率变为(
x
[
n
]
{displaystyle x}
可以认为是
N
(
A
,
σ
2
)
{displaystyle {mathcal {N}}(A,sigma ^{2})}
)由于相互独立,
x
{displaystyle mathbf {x} }
的概率变为概率密度函数取自然对数于是最大似然估计器是对数最大似然函数取一阶导数并且将它赋值为0这就得到最大似然估计器它是一个简单的采样平均。从这个例子中,我们发现对于带有固定未知直流增益的AWGN的
N
{displaystyle N}
个采样点来说采样平均就是最大似然估计器。为了找到采样平均估计器的Cramér-Rao下限(CRLB),需要找到Fisher information数从上面得到取二阶导数发现负的期望值是无关紧要的(trivial),因为它现在是一个确定的常数−
E
[
∂
2
∂
A
2
ln
p
(
x
;
A
)
]
=
N
σ
2
{displaystyle -mathrm {E} left={frac {N}{sigma ^{2}}}}最后,将Fisher information代入得到将这个值与前面确定的采样平均的变化比较显示对于所有的
N
{displaystyle N}
和
A
{displaystyle A}
来说采样平均都是等于Cramér-Rao下限。采样平均除了是最大似然估计器之外还是最小变化无偏估计器(MVUE)。这个直流增益 + WGN的例子是Kay的统计信号处理基础中一个例子的再现。
相关
- ICD-9编码列表 (710–739)Template:DorsopathiesTemplate:Disorders of subcutaneous fat Template:Osteochondropathy Template:Acquired deformities
- 表观因素表观遗传学(英语:epigenetics)又译为表征遗传学、拟遗传学、表遗传学、外遗传学以及后遗传学,在生物学和特定的遗传学领域,其研究的是在不改变DNA序列的前提下,通过某些机制引起可
- 二元并存二元论(dualism)是一个多义词。本体论上的二元论,与一元论对应,二元论认为世界由两种不可缺少且相互独立的元素组成,而一元论认为世界的本原是唯一的。本体论的一元论者认为无论
- 零次文献零次文献是一种特殊形式的信息源,主要包括两个方面的内容:零次文献一般是通过口头交谈、参观展览、参加报告会等途径获取,不仅在内容上有一定的价值,而且能弥补一般公开文献从信
- 新闻新闻,在中国古代又称新文,近代有时泛指报纸,在日语及韩语汉字中则只有报纸一义。通常指新闻机构发布的最近发生事件的消息报道。据程栋新著《第二代新闻学》,新闻的定义分两层:认
- 佛朗西斯·克里克弗朗西斯·哈利·康普顿·克里克,OM,FRS(英语:Francis Harry Compton Crick,1916年6月8日-2004年7月28日),英国生物学家、物理学家及神经科学家。他最重要的成就是1953年在剑桥大学
- 实验室芯片实验室芯片(Lab-on-a-chip)是泛指能整合多种化学、生物分析功能于单一小型芯片上,处理非常微小液量(不到数皮升, picoliter)的技术,有时又称微型全分析系统(Micro Total Analysis
- 父爱母爱和父爱是母亲、父亲对子女的关心和爱护,例如把儿子和女儿由婴儿期、儿童、青少年,直至成年,供书教学,关怀照顾等。母爱是这个世界上最温柔的力量,它为你保驾护航。母爱常被描
- 方法科学(词源为拉丁文“scientia”,意为“知识”)是一种系统性的知识体系,它积累和组织并可检验有关于宇宙的解释和预测。科学强调预测结果的具体性和可证伪性,这有别于空泛的哲学。
- 拿破仑一世拿破仑·波拿巴(法语:Napoléon Bonaparte;意大利语:Napoleone Buonaparte;1769年8月15日-1821年5月5日),法国军事家、政治家与法学家,在法国大革命末期和法国大革命战争中达到权力巅