弦宇宙学

✍ dations ◷ 2025-06-09 23:04:46 #弦理论,物理宇宙学,广义相对论,天文学

弦宇宙学是个相对较新的领域,主要尝试以方程解决早期宇宙复杂的问题。有另一学说:膜宇宙论与本理论相关。

弦宇宙学的近似最早可以溯源到加布里埃莱·韦内齐亚诺的论文。该论文指出持续膨胀的宇宙模型可以自弦论推论得出,与此同时也开启了一窥大爆炸前宇宙的窗。

这个概念与玻色弦理论中,在弯曲空间上玻色弦(也就是非线性σ模型)的性质有关。计算表明,反映模型的度规随能量标度的跑动情况的β函数与里奇曲率张量成正比,导致里奇流的产生。因为此模型有共形不变性,为了得到一个自洽的量子场论,我们对他进行量子化,这一对称性仍须维持,也就是不能出现摄动反常。因此β函数必须为零,这时前述的方程将退化成爱因斯坦重力场方程。虽然爱因爱因斯坦重力场方程在此似乎不太适用,但无论如何,这个结论是有趣的,表明二维弦论的模型产生更高维度的物理。有趣的是,在平坦空间中的弦理论中,需要假定空间的维数为26以保持理论的自洽性;但是描述弯曲空间中的弦论时不需要这一假定。这是一个重要的提示,告诉我们在爱因斯坦重力场方程下的物理可以等效地,被二维的共形场论描述。确实,事实上我们可以说宇宙暴胀就是弦宇宙学重要的证据。在宇宙暴胀以后的演化历史中,今日被观测到的宇宙膨胀可以用弗里德曼方程很好地描述。在这两个不同的阶段之间应有平滑连续的转换过程,但弦论在解释这个现象时发生问题,而此问题又被称作“优雅的退场问题”。

宇宙暴胀理论表明有一标量场来驱动暴胀。弦宇宙学中,这样的标量场源于胀子场,将该标量项带入玻色弦的描述就会在低能有效理论下产生标量场。与之对应的场方程与布莱恩斯-迪克引力理论中的类似。

经过若干的分析,我们已经将临界维度的数量从26降至4。广义来说我们能在任意维度的空间中得到弗里德曼方程;另一个方式是假定一特定的空间维度可以被紧化成有效的四维空间理论来处理。这样的理论就是从被紧化的维度引出典型带有一组标量场的卡鲁扎-克莱因理论,同时这样的场我们叫他膜。

此部分将列举出与弦宇宙论有关的方程。首先是亚历山大·泊里雅科夫作用量,可以被表示成:

  ( 2 ) R {\displaystyle \ ^{(2)}R} 是二维空间下的里奇标量; Φ {\displaystyle \Phi } 则是膜场,而 α {\displaystyle \alpha '} 是弦常数。 a , b {\displaystyle a,b} 取1或2,而 μ , ν {\displaystyle \mu ,\nu } 1 , , D {\displaystyle 1,\ldots ,D} ,其中D是系统所在维度。可以加上其他的反对称场——当我们希望作用量“自动”产生暴胀的势能时,通常会考虑加入反对称场。在其它情形下,我们可以人为加入一泛型势能和宇宙常数。

以上的作用量有共形不变性,这是二维黎曼流形的性质。由于摄动反常,在量子层面上共形不变性可能被破坏,当这样的对称性破坏生时,理论会丢失幺正性而变得不那么完备。所以有必要要求共形不变性在摄动理论的任意一阶都保持不变。摄动理论只是为了给出量子场论的近似解。事实上,β函数在两圈图下具有如下形式:

以及

我们假设共形不变性成立,代表:

就可以得出对应的低能量作用量方程。这样的条件只能在摄动的条件下被满足,并且在摄动理论的任意一阶都应该满足。 β Φ {\displaystyle \beta ^{\Phi }} 表达式中的第一项只是玻色弦在平坦时空下的摄动反常项。但在这里即使 D 26 {\displaystyle D\neq 26} (进而第一项不等于0),其它项也可能与该项相消,以至于理论中没有反常项。大爆炸前事件的宇宙学模型可以由此建构出来。的确,此低能量方程可以从以下作用量中得到:

κ 0 2 {\displaystyle \kappa _{0}^{2}} 是永远可以由重新定义膜场而被改变的常数,我们可以利用爱因斯坦参考系,按如下方式重新定义场,改写此作用量成我们更熟悉的形式。

Φ ~ = Φ Φ 0 {\displaystyle {\tilde {\Phi }}=\Phi -\Phi _{0}} 我们可以写下:

其中:

这是描述“标量场与重力场在D维度下的相互作用”的爱因斯坦作用量的表达式。的确,下列恒等式成立:

G D {\displaystyle G_{D}} 为D维度下的牛顿常数, M p {\displaystyle M_{p}} 为相应的普朗克质量。当我们在此作用量中设定 D = 4 {\displaystyle D=4} 时,暴胀的条件并不被满足——除非在弦理论的作用量加入势能或是反对称项,在那样的情形中指数暴胀是可能发生的。

相关

  • 乍得人猿乍得沙赫人(Sahelanthropus tchadensis),又名乍得人猿,是一种只有化石的猿,相信是生存于700万年前(7Ma)。它被称为最古老的人属祖先,是人类及黑猩猩的最近共同祖先。它是属于中新
  • 神奈川条约《神奈川条约》(日语:神奈川条約,英语:Kanagawa Treaty)为1854年3月31日(嘉永7年旧历三月初三)江户幕府与美国所缔结的条约,日本通称为《日美和亲条约》(日语:日米和親条約)。签约代表
  • 叶子叶是高等植物的营养器官,侧边发育自植物的茎的叶原基。叶内含有叶绿体,是植物进行光合作用的主要场所。同时,植物的蒸散作用是通过叶的气孔实现的。叶只出现在真正的茎上,即只有
  • 气体扩散定律格锐目定律(英语:Graham's Law)说明定温定压时,气体的隙流速率与其气体微粒质量的平方根成反比。此定律由苏格兰化学家托马斯·格锐目于1831年在实验的基础上提出,其形式为:
  • 西非法郎非洲金融共同体法郎(ISO 4217 代码 XOF),又称作西非法郎,是非洲法郎的一种,通行于西非8个国家。由西非国家中央银行发行。西非法郎现时流通于贝宁、布基纳法索、科特迪瓦、几内亚
  • 国际法学院北京大学国际法学院隶属于北京大学深圳研究生院,开设美国法律学位(J.D.)、中国大陆法律硕士学位,以及LL.M.等课程。该学院成立于2008年,首任院长是原康奈尔大学校长杰弗里·雷蒙(
  • 宜黄县宜黄县是中国江西省抚州市所辖的一个县。总面积为1944平方公里,2003年人口为21.1万。三国吴太平二年(公元257),析临汝建宜黄县。属临川郡。隋开皇九年(公元589),宜黄并入崇仁县。唐
  • 伊莎·安巴尼伊莎·安巴尼(英语:Isha Ambani,,1991年10月23日-)是印度女商人和信实工业旗下信实电讯公司(Reliance Jio Infocomm Limited)和零售主管。毕业于美国耶鲁大学,安巴尼的父亲是印度和亚
  • 芮南·劳瑞芮南·劳瑞(英语:Ranan Lurie,1932年5月26日-),以色列裔美国政治漫画家与记者,也是门萨会的会员。劳瑞的妻子是Tamar。有一个儿子叫Rod(英语:Rod Lurie),是一名电影导演和编剧。
  • 性本恶《性本恶》(英语:)是一部2014年美国黑色幽默剧情片,为保罗·汤玛斯·安德森编剧并执导。改编自托马斯·平钦所著的英文同名小说《固有瑕疵》,为首部改编自平钦的电影。由杰昆·菲