弦宇宙学

✍ dations ◷ 2025-11-29 15:37:24 #弦理论,物理宇宙学,广义相对论,天文学

弦宇宙学是个相对较新的领域,主要尝试以方程解决早期宇宙复杂的问题。有另一学说:膜宇宙论与本理论相关。

弦宇宙学的近似最早可以溯源到加布里埃莱·韦内齐亚诺的论文。该论文指出持续膨胀的宇宙模型可以自弦论推论得出,与此同时也开启了一窥大爆炸前宇宙的窗。

这个概念与玻色弦理论中,在弯曲空间上玻色弦(也就是非线性σ模型)的性质有关。计算表明,反映模型的度规随能量标度的跑动情况的β函数与里奇曲率张量成正比,导致里奇流的产生。因为此模型有共形不变性,为了得到一个自洽的量子场论,我们对他进行量子化,这一对称性仍须维持,也就是不能出现摄动反常。因此β函数必须为零,这时前述的方程将退化成爱因斯坦重力场方程。虽然爱因爱因斯坦重力场方程在此似乎不太适用,但无论如何,这个结论是有趣的,表明二维弦论的模型产生更高维度的物理。有趣的是,在平坦空间中的弦理论中,需要假定空间的维数为26以保持理论的自洽性;但是描述弯曲空间中的弦论时不需要这一假定。这是一个重要的提示,告诉我们在爱因斯坦重力场方程下的物理可以等效地,被二维的共形场论描述。确实,事实上我们可以说宇宙暴胀就是弦宇宙学重要的证据。在宇宙暴胀以后的演化历史中,今日被观测到的宇宙膨胀可以用弗里德曼方程很好地描述。在这两个不同的阶段之间应有平滑连续的转换过程,但弦论在解释这个现象时发生问题,而此问题又被称作“优雅的退场问题”。

宇宙暴胀理论表明有一标量场来驱动暴胀。弦宇宙学中,这样的标量场源于胀子场,将该标量项带入玻色弦的描述就会在低能有效理论下产生标量场。与之对应的场方程与布莱恩斯-迪克引力理论中的类似。

经过若干的分析,我们已经将临界维度的数量从26降至4。广义来说我们能在任意维度的空间中得到弗里德曼方程;另一个方式是假定一特定的空间维度可以被紧化成有效的四维空间理论来处理。这样的理论就是从被紧化的维度引出典型带有一组标量场的卡鲁扎-克莱因理论,同时这样的场我们叫他膜。

此部分将列举出与弦宇宙论有关的方程。首先是亚历山大·泊里雅科夫作用量,可以被表示成:

  ( 2 ) R {\displaystyle \ ^{(2)}R} 是二维空间下的里奇标量; Φ {\displaystyle \Phi } 则是膜场,而 α {\displaystyle \alpha '} 是弦常数。 a , b {\displaystyle a,b} 取1或2,而 μ , ν {\displaystyle \mu ,\nu } 1 , , D {\displaystyle 1,\ldots ,D} ,其中D是系统所在维度。可以加上其他的反对称场——当我们希望作用量“自动”产生暴胀的势能时,通常会考虑加入反对称场。在其它情形下,我们可以人为加入一泛型势能和宇宙常数。

以上的作用量有共形不变性,这是二维黎曼流形的性质。由于摄动反常,在量子层面上共形不变性可能被破坏,当这样的对称性破坏生时,理论会丢失幺正性而变得不那么完备。所以有必要要求共形不变性在摄动理论的任意一阶都保持不变。摄动理论只是为了给出量子场论的近似解。事实上,β函数在两圈图下具有如下形式:

以及

我们假设共形不变性成立,代表:

就可以得出对应的低能量作用量方程。这样的条件只能在摄动的条件下被满足,并且在摄动理论的任意一阶都应该满足。 β Φ {\displaystyle \beta ^{\Phi }} 表达式中的第一项只是玻色弦在平坦时空下的摄动反常项。但在这里即使 D 26 {\displaystyle D\neq 26} (进而第一项不等于0),其它项也可能与该项相消,以至于理论中没有反常项。大爆炸前事件的宇宙学模型可以由此建构出来。的确,此低能量方程可以从以下作用量中得到:

κ 0 2 {\displaystyle \kappa _{0}^{2}} 是永远可以由重新定义膜场而被改变的常数,我们可以利用爱因斯坦参考系,按如下方式重新定义场,改写此作用量成我们更熟悉的形式。

Φ ~ = Φ Φ 0 {\displaystyle {\tilde {\Phi }}=\Phi -\Phi _{0}} 我们可以写下:

其中:

这是描述“标量场与重力场在D维度下的相互作用”的爱因斯坦作用量的表达式。的确,下列恒等式成立:

G D {\displaystyle G_{D}} 为D维度下的牛顿常数, M p {\displaystyle M_{p}} 为相应的普朗克质量。当我们在此作用量中设定 D = 4 {\displaystyle D=4} 时,暴胀的条件并不被满足——除非在弦理论的作用量加入势能或是反对称项,在那样的情形中指数暴胀是可能发生的。

相关

  • 总督宫总督宫可以指:
  • 德尔布吕克马克斯·路德维希·亨宁·德尔布吕克(德语:Max Ludwig Henning Delbrück,1906年9月4日-1981年3月9日),德裔美籍生物物理学家,1969年诺贝尔生理学或医学奖的共同获奖者之一。马克斯
  • M. Tegmark马克斯·埃里克·泰格马克(英语:Max Erik Tegmark,1967年5月5日-),宇宙学家,拥有美国与瑞典双重国籍。他现为麻省理工学院教授、基础问题研究所(英语:Foundational Questions Institu
  • 索末菲阿诺尔德·索末菲(德语:Arnold Sommerfeld,全名Arnold Johannes Wilhelm Sommerfeld,1868年12月5日-1951年4月26日),德国物理学家,量子力学与原子物理学的开山始祖之一。他发现了精
  • 龟旨歌《龟旨歌》又称《迎神歌》是记载于《三国遗事》卷二《驾洛国记》的一首朝鲜古代歌谣,创作于公元42年,是迄今古代文献中所能看到的最早的朝鲜古代歌谣。《龟旨歌》是古伽倻人按
  • 光学同调断层扫描光学相干断层扫描(英文: Optical coherence tomography,简称OCT)是一种光学信号获取与处理的方式。它可以对光学散射介质如生物组织等进行扫描,获得的三维图像分辨率可以达到微
  • 萨宾国家森林萨宾国家森林(英语:Sabine National Forest)位于东德克萨斯州(英语:East Texas)靠近得克萨斯-路易斯安那边界的地方。森林与另外完全位于德克萨斯州的三座国家森林、两片国家草原
  • 2015年巴西羽毛球大奖赛2015年巴西羽毛球大奖赛为第2015年度的巴西羽毛球公开赛,是2015年世界羽联大奖赛的其中一站。本届赛事于2015年11月24日至11月29日在巴西里约热内卢的Riocentro 4举行,总奖金
  • 恩顺恩顺(1850年代约1853年-1911年),京旗旗人,隶属满洲镶白旗,字子澄(一作子诚),清末官员。他是翻译生员,光绪八年壬午科翻译举人,光绪九年癸未科翻译进士。他历任如下官职:他是《德宗景皇帝
  • 马里-皮埃尔·柯尼希马里-皮埃尔·柯尼希(法语:Marie-Pierre Kœnig,1898年10月10日-1970年9月2日),法国将军。他指挥的自由法国旅1942年在北非比尔哈凯姆战役(英语:Battle of Bir Hakeim)成功阻击了隆美