首页 >
等于
✍ dations ◷ 2025-01-23 06:10:38 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“
=
{displaystyle =}
”;
x
=
y
{displaystyle x=y}
当且仅当
x
{displaystyle x}
和
y
{displaystyle y}
相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如
6
−
2
=
4
{displaystyle 6-2=4}
,即
6
−
2
{displaystyle 6-2}
与
4
{displaystyle 4}
是相等的。注意,有些时候“
A
=
B
{displaystyle A=B}
”并不表示等式。例如,
T
(
n
)
=
O
(
n
2
)
{displaystyle T(n)=O(n^{2})}
表示在数量级
n
2
{displaystyle n^{2}}
上渐进。因为这里的符号“
=
{displaystyle =}
”不满足当且仅当的定义,所以它不等于等于符号;实际上,
O
(
n
2
)
=
T
(
n
)
{displaystyle O(n^{2})=T(n)}
是没有意义的。请参见大O符号了解这部分内容。集合
A
{displaystyle A}
上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。
实际上,这是
A
{displaystyle A}
上唯一满足所有这些性质的关系。
去掉对反对称性的要求,就是等价关系。
相应的,给定任意等价关系
R
{displaystyle R}
,可以构造商集
A
/
R
{displaystyle A/R}
,并且这个等价关系将‘下降为’
A
/
R
{displaystyle A/R}
上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。
莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。
形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词
P
{displaystyle P}
都有效,但只定义了莱布尼茨律的一个方向:若
x
{displaystyle x}
和
y
{displaystyle y}
相等,则它们具有相同的性质。
可以通过简单的假设来定义莱布尼茨律的另一个方向:则若
x
{displaystyle x}
和
y
{displaystyle y}
具有相同的性质,则特定的它们关于谓词
P
{displaystyle P}
是相同的。这里谓词
P
{displaystyle P}
为:
P
(
z
)
{displaystyle P(z)}
当且仅当
x
=
z
{displaystyle x=z}
。
由于
P
(
x
)
{displaystyle P(x)}
成立,
P
(
y
)
{displaystyle P(y)}
必定也成立(相同的性质),所以
x
=
y
{displaystyle x=y}
(' '
P
{displaystyle P}
的变量为
y
{displaystyle y}
).对任意量
a
{displaystyle a}
和
b
{displaystyle b}
和任意表达式
F
(
x
)
{displaystyle F(x)}
,若
a
=
b
{displaystyle a=b}
,则
F
(
a
)
=
F
(
b
)
{displaystyle F(a)=F(b)}
(设等式两边都有意义)。
在一阶逻辑中,不能量化像
F
{displaystyle F}
这样的表达式(它可能是个函数谓词)。
一些例子:对任意量
a
{displaystyle a}
,
a
=
a
{displaystyle a=a}
。这个性质通常在数学证明中作为中间步骤。例子:如果
a
=
b
{displaystyle a=b}
,那么
b
=
a
{displaystyle b=a}例子:如果
a
=
b
{displaystyle a=b}
,
b
=
c
{displaystyle b=c}
,那么
a
=
c
{displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “
=
{displaystyle =}
”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是
≈
{displaystyle approx }
或≒,不等于的符号是
≠
{displaystyle neq }
。
相关
- 空气栓塞空气栓塞(air embolism)是指气体形成气泡进入循环系统中,空气栓塞属于栓子(血液中游离的固体,液体或气体团块),潜水意外可能造成空气栓塞,也有一些因为医源性的处置造成。动脉空气栓
- 格兰德河/北布拉沃河格兰德河(英语:Rio Grande)是位于北美南部的河流,在墨西哥被称为布拉沃河(西班牙语:Río Bravo),更正式的称呼为北布拉沃河(西班牙语:Río Bravo del Norte)。全长3034公里,是美国第五长
- 固态固体是物质存在的一种状态,是四种基本物质状态之一。与液体和气体相比,固体有固定的体积及形状,形状也不会随着容器形状而改变。固体的质地较液体及气体坚硬,固体的原子之间有紧
- 中世纪温暖时期中世纪温暖时期是指北大西洋地区内由公元10世纪到14世纪所出现一个不正常温暖的时期。大约是在公元950年至1150年,相当于中国的北宋时期。中世纪温暖时期常常成为全球变暖的
- GBSGBS可以指:
- 二号宇宙神2号运载火箭属宇宙神系列运载火箭,是由1950年代成功的SM-65宇宙神导弹发展而来,宇宙神2号运载火箭为最后使用三发动机及"一节半式火箭"设计,于火箭推进途中将三部发动机
- 成链成链(catenation)是指同一种化学元素的原子经由连续的共价键互相连接形成长链状的分子。成链之形式在碳原子中最易出现,形成碳原子和碳原子之间相连的共价键。成链是自然界存在
- 羰基配合物金属羰基配合物是过渡金属和一氧化碳配基(即羰基,羰的拼音为tāng)形成的配合物。配合物可以是均配物,也就是所有的配基都相同(都是一氧化碳),如四羰基镍(Ni(CO)4),不过大部分的金属羰
- Ti钛(原子量:47.867)共有28个同位素,其中有5个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
- ΖZeta(大写Ζ,小写ζ),是第六个希腊字母。数学上,有多个名为Zeta函数的函数,最著名的是黎曼ζ函数。拉丁字母的Z是从Zeta而来。