等于

✍ dations ◷ 2025-04-06 02:35:20 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 气体交换气体交换,是指生物把体内氧气和二氧化碳的交换过程。人体的细胞需要氧来进行呼吸作用,过程中产生二氧化碳,若二氧化碳累积在体内会对细胞造成伤害。为确保有充足的氧运到细胞,而
  • 嗜睡症嗜睡症(hypersomnia)是一种会睡眠过度的疾病,主要有两种类型:原发性嗜睡症和反复性嗜睡症。两者的症状相同,但发生频率不同。患有嗜睡症的人会反复发生过度日间嗜睡(英语:Excessive
  • 低毒性病毒科低毒性病毒科(Hypoviridae) 又译作次毒(性)病毒科或轻毒(性)病毒科,是双琏RNA病毒中的一科,该类病毒主要感染菌类。下有一属:*次毒病毒属(Hypovirus,又译作低毒性病毒属)直径50-80nm,
  • 三立新闻三立新闻台(英语:SET News Channel),简称“三立新闻”,是台湾三立电视旗下的电视新闻频道,1998年3月3日开播,是台湾多家24小时即时播出的新闻频道之一。原名SET电视台,后改为SETN,200
  • 语言哲学语言哲学是一门哲学的分支,对语言的用法、来源及本质作理性的研究。对于分析哲学来说,有四个主要关心的问题:意义的本质、语言用法、语言认知及语言与现实的关系。对欧陆哲学家
  • 平方毫米(符号为mm²)是面积的公制单位(SI Unit),其定义是“边长为1毫米的正方形的面积”。(1m²=1000000mm²) (1cm²=100mm²) (1µm²=0.000001mm²)平方尧米、平方佑米(Ym²
  • 盖瑞·贝克知识产权市场化自由放任小政府主义负所得税公开市场操作私有财产私有化经济主题加里·史丹利·贝克(英语:Gary Stanley Becker,1930年12月2日-2014年5月3日),美国著名经济学家,芝加
  • 黑磷磷的同素异形体有许多种,其中白磷和红磷最为常见。另外还存在紫磷和黑磷。气态磷单质中有P2分子与磷原子。白磷(因商品白磷常带黄色,故又称为黄磷:180),分子式P4,为白色固体,质软。
  • 清异录《清异录》书名,宋陶谷撰,凡二卷。《清异录》分三十七门,内容包括〈天文〉、〈地理〉、〈君道〉、〈官志〉、〈人事〉、〈女行〉、〈君子〉、〈么么〉、〈释族〉、〈仙宗〉、〈
  • 马其顿共和国面积以下资讯是以2015年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018年估计北