等于

✍ dations ◷ 2025-09-03 03:52:58 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 醉虾醉虾,是一种用虾制作的中国菜肴。这道菜不同地方做法不同,一般是把虾浸渍于酒中,一些地方是生吃,一些则是煮熟后食用。由于活的淡水虾可能有肺吸虫寄生,可能对食用者是一个严重的
  • 经济体系一群经济个体之间具有相互联系关系,如礼物经济、自然经济、市场经济、计划经济、混合经济等经济体系。市场经济体系中个体间的通货可以互相兑换,任一个体的变动都会对总体造成
  • 说文解字《说文解字》简称《说文》,是中国东汉时期由学者许慎编著的一部文字工具书,全书共分540个(俄语:Список ключей Шовэнь цзецзы)部首,收字9,353个,另有“重
  • 扁桃腺结石扁桃腺结石(英语:Tonsilloliths、tonsil stones或tonsilar calculi)是口腔内藏于腭扁桃体(英语:Palatine tonsil)上的钙化物,米粒至爆谷大小,重300毫克(0.011盎司)至42克(1.5盎司),可导致
  • 性别认同疾患性别不安(英语:gender dysphoria),又称性别焦虑、性别不一致,旧称性别认同障碍(英语:gender identity disorder)或易性症,是一个人因为出生时的性别指定而遭受的痛苦。在这种情况下,性
  • 认知功能障碍发展障碍、发展迟缓(Developmental disorders),也称心理发展障碍,是一类儿童学习障碍和相关的发育障碍的总称。其包含特殊性发育障碍和广泛性发育障碍。该自闭症关联团体组织的
  • 兴奋剂检查药物测试(英语:drug test),对于人体进行的测试,通过检查人体的血液、尿液、皮肤、头发等,来确认受测者是否摄取过某种特定药物。在正式的体育运动竞赛中实施的药物检查,称为禁药检
  • 双原子双原子分子指所有由两个原子组成的分子。双原子分子内的化学键通常是共价键。很多非金属元素(包括氢、氮、氧、氟、氯、溴、碘等)的单质均是双原子分子。其他元素(如磷)也可能以
  • 乔治·伯纳德·丹齐格乔治·伯纳德·丹齐格(英语:George Bernard Dantzig,1914年11月8日-2005年5月13日),美国应用数学家,1947年提出了单纯形法 ,被称为线性规划之父。丹齐格的父亲托比阿斯·丹齐格是1名
  • 里根经济学里根经济学是指20世纪80年代美国总统罗纳德·里根的经济政策,这些促进经济成长政策通常与供给面学派有关,也被称为涓滴效应学(不进行财富再分配,而是反过来使有钱人更富有,大企业