等于

✍ dations ◷ 2025-07-03 13:50:02 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 免疫抑制药物免疫抑制剂(英语:Immunosuppressive drug)是对免疫系统有免疫抑制效用的物质,分为外原的免疫抑制药,一类压制人体免疫反应的相关药物,用于器官移植与各种自体免疫疾病。和内原的免
  • 眼睛眼(亦称眼睛、目、目睭)是视觉的器官,可以感知光线,转换为神经中电化学的脉冲。比较复杂的眼睛是一个光学系统,可以收集周遭环境的光线,借由虹膜调整进入眼睛的强度,利用可调整的晶
  • 基纳省基纳省(阿拉伯语:محافظة قنا‎),是埃及二十九省之一,位于埃及南部,首府为基纳。尼罗河贯穿本省。面积1,796平方公里,人口1,092,316人(2006年统计)。2009年12月7日,卢克索省自
  • 中国科学院上海巴斯德研究所中国科学院上海巴斯德研究所(英语:Institut Pasteur of Shanghai, Chinese Academy of Sciences),成立于2005年,位于上海市徐汇区。是由中国科学院、上海市和法国巴斯德研究所共
  • 脂肪肉瘤脂肪肉瘤(英语:Liposarcoma),是一种由脂肪细胞在深层软组织(如腹膜后或大腿内侧)异常增生导致的癌症。 脂肪肉瘤是一种罕见的恶性肿瘤,显微观察显示其与普通脂肪细胞类似。脂肪肉瘤
  • 永续设计可持续设计,是一种以符合经济、社会及生态学三者可持续经营为方针的设计方法。可持续设计领域旨在通过采用综合方法创造“三赢”设计来平衡这些领域的需求。可持续设计的范畴
  • 固br /结br /纪固结纪(Statherian,符号PP4)是地质时代中的一个纪,开始于同位素年龄1800±0百万年(Ma),结束于1600±0Ma。固结纪期间蓝藻、细菌繁盛。固结纪属于前寒武纪元古宙古元古代;固结纪的
  • 加拿大地盾加拿大地盾(英语:Canadian Shield)是北美大陆,从加拿大中部延伸到北部的前寒武纪(约45亿年前-5.4亿年前)古岩盘。大致上围绕哈德逊湾,是非常稳定的地盘。加拿大原住民史 · 新法兰
  • Hsub2/subSsub2/subOsub6/sub连二硫酸(H2S2O6)是一种只能在溶液中存在的化合物。连二硫酸是一种较稳定的强酸。室温下,稀的连二硫酸溶液较稳定。溶液被浓缩或者受热时,缓慢歧化分解为硫酸和二氧化硫:连二硫酸
  • 菲律宾群岛菲律宾是位于东南亚的一个岛国,地处北纬4°35′~21°8′,东经116°55′~126°37′之间,北隔巴士海峡与台湾岛相望,西临南海与中南半岛相望,南接加里曼丹岛和苏拉威西海,东临太平洋。