等于

✍ dations ◷ 2025-04-02 09:17:28 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 缺血性心脏病冠状动脉疾病(英语:coronary artery disease, CAD)又称为缺血性心脏病或简称冠心病(英语:ischemic heart disease, IHD)、冠状动脉粥状硬化心脏病、冠状动脉粥状硬化心血管疾病(英
  • 尿素尿素是由碳、氮、氧和氢组成的有机化合物,又称脲(与尿同音)。其化学式为 CON2H4、(NH2)2CO 或 CN2H4O,分子质量60,国际非专利药品名称为 Carbamide(碳酰胺)。外观是无色晶体或粉末,
  • 体外人工受精体外人工受孕(英语:In vitro fertilization,缩写IVF; artificial fertilization),是将卵子与精子取出,在人为操作下进行体外受精,并培养成胚胎,再将胚胎植回母体内,整个过程真正在试
  • 琉善琉善(希腊语:Λουκιανός,约120年—180年),生于叙利亚的萨莫萨塔,罗马帝国时代的以希腊语创作的讽刺作家,以游历月球的奇幻短篇《信史》(周作人译作《真实的故事》)及一系列对
  • 心灵心灵或称心智(英语:mind)指一系列认知能力组成的总体,这些能力可以让个体具有意识、感知外界、进行思考、做出判断以及记忆事物。心灵是人类的特征,但是其它的生物可能也具有心灵
  • 芬兰-乌戈尔语族芬兰-乌戈尔语族(也译称为芬-乌戈尔语族或芬诺-乌戈尔语族)是乌拉尔语系的一支,多数语言学家认为芬兰语、匈牙利语和爱沙尼亚语都包含在此语族中。与欧洲其他地方使用的语言不
  • 苏胥如塔妙闻(梵语:सुश्रुत,音译为苏胥如塔、苏士鲁塔)仙人,生活于约前7世纪到前6世纪的古印度外科医生,阿育吠陀学者,《妙闻本集(印地语:सुश्रुत संहिता)》的主要作者。
  • G蛋白G蛋白(英语:G Protein)是指鸟苷酸结合蛋白(guanine nucleotide-binding proteins)。它含有一个鸟苷酸结合结构域,由α、β、γ三个亚基组成。激活状态下的G蛋白可以激活腺苷酸环化
  • 詹姆斯·冈恩丹尼·海涅曼天体物理学奖 (1988)詹姆斯·爱德华·冈恩(英语:James Edward Gunn,1938年10月21日-),美国天文学家,普林斯顿大学尤金·希金斯天文学教授。冈恩的早期理论工作建立了对
  • NFL国家美式橄榄球联盟(National Football League,NFL)是世界最大的职业美式橄榄球联盟,也是世界最具商业价值的体育联盟之一。联盟最早在1920年以美国职业美式橄榄球協会(American