等于

✍ dations ◷ 2025-06-27 19:51:51 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 结核分支杆菌结核杆菌,即结核分枝杆菌(学名:Mycobacterium tuberculosis)是专性需氧微生物,1882年德国微生物学家罗伯·柯霍在柏林宣告它是结核病的病原体。他凭着此发现获得了1905年诺贝尔生
  • 雨水扑满雨水收集(英语:Rainwater harvesting)又称雨扑满、雨水集蓄,是雨水的累积用于现场再利用而不是允许其流失。雨水可以从雨水收集或屋顶雨水收集器收集,或用网或其他工具从雾和露水
  • 斯巴达国王列表斯巴达是古希腊最重要的城邦国家之一,在所有希腊城邦国家中领土最广大。斯巴达实行非常独特的政治制度,即由来自两个王室的国王同时统治,两支王室的继承互不干扰。两个王室分别
  • 佩特罗尼乌斯盖厄斯·佩特罗尼乌斯·阿尔比特(Gaius Petronius Arbiter,27年-66年)是一位罗马帝国朝臣(英语:Courtier)、抒情诗人与小说家,生活于罗马皇帝尼禄统治时期。讽刺小说《爱情神话(英语:T
  • 糖原分解糖原分解是指由糖原分解成为葡萄糖-1-磷酸(G-1-P)及葡萄糖的过程,即糖原支链的异化作用。此反应的化学实质是链最末端的葡萄糖残基被磷酸化,进而以单体葡萄糖形式脱离糖原链。在
  • 乙型流感嗜血杆菌疫苗流感嗜血杆菌疫苗(Haemophilus influenzae type B vaccine)是一种用作预防流感嗜血杆菌(HIB)感染的疫苗 。在有将这疫苗纳入接种计划的国家,严重的流感嗜血杆菌感染率减少到10%以
  • 6d1 7s22, 8, 18, 32, 18, 9, 2第一:499 kJ·mol−1 第二:1170 kJ·mol主条目:锕的同位素锕是一种放射性金属元素,符号为Ac,原子序为89。锕在1899年被发现,是首个得到分离的非
  • 居里点居里点(Curie point)又作居里温度(Curie temperature,Tc)或磁性转变点。是指磁性材料中自发磁化强度降到零时的温度,是铁磁性或亚铁磁性物质转变成顺磁性物质的临界点。低于居里点
  • 法国教育法国教育制度是高度中央集权的、组织化的,可以分为三个阶段:初等教育和中等教育以公立学校占优势(私立学校也存在,特别是天主教中小学校在全国自成体系),而高等教育则兼有公立和私
  • 威廉·亨利·布拉格威廉·亨利·布拉格爵士,OM,KBE,FRS(英语:Sir William Henry Bragg,1862年7月2日-1942年3月10日),英国物理学家、化学家,1915年与其子威廉·劳伦斯·布拉格一同获得诺贝尔物理学奖。威