首页 >
等于
✍ dations ◷ 2024-12-22 18:13:53 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“
=
{displaystyle =}
”;
x
=
y
{displaystyle x=y}
当且仅当
x
{displaystyle x}
和
y
{displaystyle y}
相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如
6
−
2
=
4
{displaystyle 6-2=4}
,即
6
−
2
{displaystyle 6-2}
与
4
{displaystyle 4}
是相等的。注意,有些时候“
A
=
B
{displaystyle A=B}
”并不表示等式。例如,
T
(
n
)
=
O
(
n
2
)
{displaystyle T(n)=O(n^{2})}
表示在数量级
n
2
{displaystyle n^{2}}
上渐进。因为这里的符号“
=
{displaystyle =}
”不满足当且仅当的定义,所以它不等于等于符号;实际上,
O
(
n
2
)
=
T
(
n
)
{displaystyle O(n^{2})=T(n)}
是没有意义的。请参见大O符号了解这部分内容。集合
A
{displaystyle A}
上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。
实际上,这是
A
{displaystyle A}
上唯一满足所有这些性质的关系。
去掉对反对称性的要求,就是等价关系。
相应的,给定任意等价关系
R
{displaystyle R}
,可以构造商集
A
/
R
{displaystyle A/R}
,并且这个等价关系将‘下降为’
A
/
R
{displaystyle A/R}
上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。
莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。
形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词
P
{displaystyle P}
都有效,但只定义了莱布尼茨律的一个方向:若
x
{displaystyle x}
和
y
{displaystyle y}
相等,则它们具有相同的性质。
可以通过简单的假设来定义莱布尼茨律的另一个方向:则若
x
{displaystyle x}
和
y
{displaystyle y}
具有相同的性质,则特定的它们关于谓词
P
{displaystyle P}
是相同的。这里谓词
P
{displaystyle P}
为:
P
(
z
)
{displaystyle P(z)}
当且仅当
x
=
z
{displaystyle x=z}
。
由于
P
(
x
)
{displaystyle P(x)}
成立,
P
(
y
)
{displaystyle P(y)}
必定也成立(相同的性质),所以
x
=
y
{displaystyle x=y}
(' '
P
{displaystyle P}
的变量为
y
{displaystyle y}
).对任意量
a
{displaystyle a}
和
b
{displaystyle b}
和任意表达式
F
(
x
)
{displaystyle F(x)}
,若
a
=
b
{displaystyle a=b}
,则
F
(
a
)
=
F
(
b
)
{displaystyle F(a)=F(b)}
(设等式两边都有意义)。
在一阶逻辑中,不能量化像
F
{displaystyle F}
这样的表达式(它可能是个函数谓词)。
一些例子:对任意量
a
{displaystyle a}
,
a
=
a
{displaystyle a=a}
。这个性质通常在数学证明中作为中间步骤。例子:如果
a
=
b
{displaystyle a=b}
,那么
b
=
a
{displaystyle b=a}例子:如果
a
=
b
{displaystyle a=b}
,
b
=
c
{displaystyle b=c}
,那么
a
=
c
{displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “
=
{displaystyle =}
”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是
≈
{displaystyle approx }
或≒,不等于的符号是
≠
{displaystyle neq }
。
相关
- 嗜肺军团菌嗜肺军团菌是一种有鞭毛,革兰氏阴性,军团菌属多形态性的短小球杆菌。嗜肺军团菌是一种原发的人类病原体,会引发军团病。嗜肺军团菌不抗酸,无孢子,无荚膜,类似于杆菌。不能分解明胶
- 人口不足人口不足(又称人口稀少或人口过稀),通常是指一个国家的人口减少至无法支持该国的社会经济。举例来说,假如现时已退休的上一辈当年的每个家庭平均有三个小孩,而现时的新一代则平均
- 多发性大动脉炎大动脉炎(Takayasu arteritis,TA)是一种累及主动脉及其主要分支以及肺动脉的慢性进行性非特异炎性疾病:841。疾病由日本医生高安右人(Mikito Takayasu)在1908年首次报告,因此又被
- 戴奥辛二
- 缓冲溶液缓冲溶液(德语:Pufferlösung;英语:buffer solution;法语:solution tampon)指由“弱酸及其共轭碱之盐类”或“弱碱及其共轭酸之盐类”所组成的缓冲对配制的,能够在加入一定量其他物
- 盎格鲁人盎格鲁人(英语:Angles)是一个现代英语的词语,此称呼来自日耳曼民族对自己祖先地——德国石勒苏益格盎格恩(英语:Angeln)。
- 肺性心肺性心即肺性心脏病(cor pulmonale,CP),是肺的疾病引起肺循环障碍,导致肺动脉压亢进,造成右心室肥大扩张的状态。会出现发绀、颈静脉充血、水肿等症状。
- 儿科学小儿科(或称儿科)是现代医学的一个分支,专门医疗患病的婴儿、儿童及青少年。最大的年龄通常至青春期。一个受到这方面知识专门训练的医生被称作儿科医生。
- 澳大利亚人种澳洲人种(the Proto-Austroloids)亦称原始澳大利亚人种,是按照遗传和体质为人类分类所划分出的一个人种。他们属于第一批走出非洲的人类,被认为在五万年前到达澳洲。澳洲人种主
- Missoni米索尼(Missoni)是意大利的一个奢侈针织品品牌,总部位于意大利瓦雷泽。1953年,它由奥塔维奥·米索尼和罗西塔·米索尼(Rosita Missoni)创立于意大利加拉拉泰。经过安娜·皮亚姬的