等于

✍ dations ◷ 2025-09-16 17:16:52 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 成人隐匿迟发性自体免疫糖尿病成人隐匿迟发性自体免疫糖尿病(latent autoimmune diabetes in adults, LADA),又称为1.5型糖尿病。是一种介于1型糖尿病与2型糖尿病之间的糖尿病。大多数1型糖尿病患者在进行诊
  • QJ51ATC代码J(抗感染药)是解剖学治疗学及化学分类系统的一个分类,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborating Centre for Drug Statistics Methodology)所制定的
  • 理学理学可以指:一些与物理学有关科学的简称:
  • 科学论实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • 恒星恒星物理学,是天体物理学的一个重要分支,研究恒星内部的结构与物理过程、恒星的演化、脉动与大气内辐射以及致密天体(如白矮星、中子星)等,它奠定了当代天体物理的基础。诺贝尔物
  • 人类中心论人类中心主义认为人类是地球上,以至宇宙间最核心或者最重要的物种,评价现实的真实与否亦依靠人类的视角。 其首要概念也可理解为人类至上。人类中心主义是环境伦理学和环境哲
  • 季候风季风(又称季候风)是周期性的风,随着季节变化,并且盛行风向(40%以上风频)季节切变达120度以上(按照传统定义,非全球性季风定义)。主要发生在季风亚洲(东亚、东南亚、南亚地区)、西非几内
  • 美国化学会美国化学学会(英语:American Chemical Society,简称为ACS)是一个化学领域的专业组织。1876年于美国纽约大学成立,现有157,000位来自化学与化工界各个分支的会员,总部位于华盛顿哥
  • 蓝岭山脉蓝岭山脉(英语:Blue Ridge Mountains)是美国东南部的山脉,为阿帕拉契山脉的东段。从宾夕法尼亚州南部起,经马里兰州、维吉尼亚州和北卡罗莱纳州到乔治亚州,东北-西南走向延伸约1050
  • 耶稣升天节耶稣升天节是纪念基督耶稣在复活四十日后升天一事。这在《使徒信经》和《尼西亚信经》都得以确认。由于复活节在星期日,故本节在星期四庆祝。