首页 >
三角化八面体
✍ dations ◷ 2025-07-15 14:20:22 #三角化八面体
在几何学中,三角化八面体又称三角三八面体
是一种卡塔兰立体,其对偶多面体为截角立方体,可以视为在正八面体每个面上加入三角锥的结果
,但由于有另一种多面体也是由正八面体每个面上加入三角锥的结果,为大三角化八面体,差别在于大三角化八面体是向内加入角锥,而此多面体向外加入角锥,为了区别两者差异,因此有时也会称此多面体为小三角化八面体。在矿物学中,这种形状又称为三八面体(英语:trisoctahedron),部分的矿石可以结晶成这种形状,例如萤石。三角化八面体是一个卡塔兰立体,为阿基米德立体——截角立方体的对偶多面体,因此具有面可递的性质。三角化八面体是一种二十四面体,由24个面、36条边和14个顶点组成,其中24个面为全等的等腰三角形,顶点可分为2种,一种为8个等腰三角形的公共顶点,另一种为3个等腰三角形的公共顶点。三角化八面体可以视为将正八面体各个面从中心切割成3个等腰三角形所形成的多面体。三角化八面体是菱形(正方形倾斜四十五度)四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。一个最短边长为1的三角化八面体,它的表面积为
3
7
+
4
2
{displaystyle 3{sqrt {7+4{sqrt {2}}}}}
,体积为
1
2
(
3
+
2
2
)
{displaystyle {frac {1}{2}}(3+2{sqrt {2}})}
。三角化八面体由24个全等的等腰三角形组成。组成三角化八面体的等腰三角形的2个底角为arccos
(
2
4
+
1
2
)
{displaystyle scriptstyle {left({tfrac {sqrt {2}}{4}}+{tfrac {1}{2}}right)}}
约为31.4°,由三角形内角关系可知顶角约为117.2°,边长比为1:1:
2
+
2
2
{displaystyle {begin{matrix}{frac {2+{sqrt {2}} }{2}}end{matrix}}}
。若一个三角化八面体最短边长为2且几何中心位于原点,则其顶点坐标为:三角化八面体有3个特殊的正交投影,分别为于棱上投影、于8个等腰三角形的公共顶点上投影和于3个等腰三角形的公共顶点上投影。三角化八面体也可以表示为球面镶嵌,也可以透过施莱格尔投影(英语:Schlegel diagram),于平面上呈现。而其施莱格尔投影的结果在图论中是一种阿基米德对偶图,称为小三角化八面体图。三角化八面体出现在部分的艺术创作中,例如莫里兹·柯尼利斯·艾雪的艺术创作。部分小说也有使用三角化八面体进行创作,如休伊·库克(英语:Hugh Cook)的系列小说《黑暗时代的编年史(英语:Chronicles_of_an_Age_of_Darkness)》中的《希望之石与奇迹工人(英语:Chronicles of an Age of Darkness#The Wishstone and the Wonderworkers)》。除了艺术创作外,常见文化也有关于三角化八面体的使用,例如部分的魔术方块和骰子之外型。三角化八面体可以经由八面体透过三角化变换构造,即将正八面体每个面贴上三角锥来获得。其他也是由正八面体透过康威变换得到的多面体有:三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正多边形与正三角形交错组成的多面体或镶嵌图包括:类似前面提到的概念,三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正八边形与其他正多边形交错组成的多面体或镶嵌图包括:三角化八面体一般是指截角立方体的对偶多面体,但三角化八面体一词原意应为“三角化后的八面体”,换句话说,即在八面体的面上加入三角锥的多面体也可以称为三角化八面体。大三角化八面体的是一个拓朴结构与三角化八面体相同的多面体。三角化八面体是由正八面体的每个面上加入角锥构成,而大三角化八面体则是在正八面体的每个面中加入穿过对面的面的倒角锥而成,这种在面上加入倒角锥的做法使其与三角化八面体有一样的拓朴结构,几何上的差异在于,大三角化八面体和三角化八面体一个是向外加入角锥、一个是向内加入角锥。星形八面体一般是指由两个正四面体组合成的复杂多面体,复杂多面体是指该多面体有出现面与面相交的多面体,而简单多面体则是面与面没有自相交情况的多面体。对于与星形八面体外形相同的简单多面体则也可以视为在正八面体每个面阶贴上三角锥的结果,其贴上的三角锥为正四面体。这样子的组合也可以看做是正八面体四维锥(英语:Octahedral pyramid)的展开图。在图论的数学领域中,与三角化八面体相关的图为小三角化八面体图(Small Triakis Octahedral Graph),是三角化八面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。小三角化八面体图有36条边和14个顶点,其中度为3的顶点有8个;度为8的顶点有6个。
相关
- VIAF虚拟国际规范文档(英语:Virtual International Authority File,VIAF)是一个国际性的规范文档。该项目联合了许多国家图书馆,由线上电脑图书馆中心(OCLC)负责运营。此项目最初是为连
- 路德维希·维特根斯坦路德维希‧约瑟夫‧约翰‧维特根斯坦(德语:Ludwig Josef Johann Wittgenstein,又译维特根施泰因、维特根斯坦;1889年4月26日-1951年4月29日)是一名奥地利哲学家。他生于奥地利,后入
- 中医诊断学中医诊断学是根据中医学理论,研究诊查病情、判断病种、辨别证候的基础理论、基本知识和基本技能的一门学科。中医诊断学主要包括诊法学和辨证学两部,两者相互渗透,相互联系。中
- 袋棍球袋棍球(Lacrosse),又译长曲棍球、曲棍网球、棍网球、兜网球、袋球或网棒球,是一种使用顶端具有网状袋子的长棍作为持球工具的团队球类运动。起源于北美原住民部落,原本不限人数,最
- 米莲·法莫宝丽得唱片(Polydor Records) 索尼音乐娱乐米莲·法莫(Mylène Farmer,读作.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lu
- 技师技师有如下歧异解释:
- 亚斯蒙德国家公园亚斯蒙德国家公园是德国的国家公园,由梅克伦堡-前波美拉尼亚负责管辖,始建于1990年9月12日,面积30平方公里,该国家公园在2011年6月25日被联合国教科文组织列为世界遗产。
- 台语电视台台语电视台是指全程以台湾话(通称台语)发音的电视台。在台湾,具体作为是由公视成立“公视台语台”。在公视台语台开播之前,台湾没有任何一个完全以台语播出的电视台。虽然商业电
- 中期记忆中期记忆 (英语:Intermediate-term memory)是记忆的一个阶段,不同于感觉记忆,短期记忆/工作记忆,和长期记忆。 闪光灯记忆能维持几毫秒, 工作记忆能维持到三十秒,长期记忆能维持三十
- 贝拉·巴拉兹鲍拉日·贝洛(匈牙利语:Balázs Béla,1884年8月4日-1949年5月17日),匈牙利电影理论家、导演、剧作家。他认为电影能够让人们重新认识人性,他在1925年于柏林出版了一本书,提出电影是