三角化八面体

✍ dations ◷ 2025-04-26 06:39:11 #三角化八面体
在几何学中,三角化八面体又称三角三八面体 是一种卡塔兰立体,其对偶多面体为截角立方体,可以视为在正八面体每个面上加入三角锥的结果 ,但由于有另一种多面体也是由正八面体每个面上加入三角锥的结果,为大三角化八面体,差别在于大三角化八面体是向内加入角锥,而此多面体向外加入角锥,为了区别两者差异,因此有时也会称此多面体为小三角化八面体。在矿物学中,这种形状又称为三八面体(英语:trisoctahedron),部分的矿石可以结晶成这种形状,例如萤石。三角化八面体是一个卡塔兰立体,为阿基米德立体——截角立方体的对偶多面体,因此具有面可递的性质。三角化八面体是一种二十四面体,由24个面、36条边和14个顶点组成,其中24个面为全等的等腰三角形,顶点可分为2种,一种为8个等腰三角形的公共顶点,另一种为3个等腰三角形的公共顶点。三角化八面体可以视为将正八面体各个面从中心切割成3个等腰三角形所形成的多面体。三角化八面体是菱形(正方形倾斜四十五度)四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。一个最短边长为1的三角化八面体,它的表面积为 3 7 + 4 2 {displaystyle 3{sqrt {7+4{sqrt {2}}}}} ,体积为 1 2 ( 3 + 2 2 ) {displaystyle {frac {1}{2}}(3+2{sqrt {2}})} 。三角化八面体由24个全等的等腰三角形组成。组成三角化八面体的等腰三角形的2个底角为arccos ( 2 4 + 1 2 ) {displaystyle scriptstyle {left({tfrac {sqrt {2}}{4}}+{tfrac {1}{2}}right)}} 约为31.4°,由三角形内角关系可知顶角约为117.2°,边长比为1:1: 2 + 2   2 {displaystyle {begin{matrix}{frac {2+{sqrt {2}} }{2}}end{matrix}}} 。若一个三角化八面体最短边长为2且几何中心位于原点,则其顶点坐标为:三角化八面体有3个特殊的正交投影,分别为于棱上投影、于8个等腰三角形的公共顶点上投影和于3个等腰三角形的公共顶点上投影。三角化八面体也可以表示为球面镶嵌,也可以透过施莱格尔投影(英语:Schlegel diagram),于平面上呈现。而其施莱格尔投影的结果在图论中是一种阿基米德对偶图,称为小三角化八面体图。三角化八面体出现在部分的艺术创作中,例如莫里兹·柯尼利斯·艾雪的艺术创作。部分小说也有使用三角化八面体进行创作,如休伊·库克(英语:Hugh Cook)的系列小说《黑暗时代的编年史(英语:Chronicles_of_an_Age_of_Darkness)》中的《希望之石与奇迹工人(英语:Chronicles of an Age of Darkness#The Wishstone and the Wonderworkers)》。除了艺术创作外,常见文化也有关于三角化八面体的使用,例如部分的魔术方块和骰子之外型。三角化八面体可以经由八面体透过三角化变换构造,即将正八面体每个面贴上三角锥来获得。其他也是由正八面体透过康威变换得到的多面体有:三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正多边形与正三角形交错组成的多面体或镶嵌图包括:类似前面提到的概念,三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正八边形与其他正多边形交错组成的多面体或镶嵌图包括:三角化八面体一般是指截角立方体的对偶多面体,但三角化八面体一词原意应为“三角化后的八面体”,换句话说,即在八面体的面上加入三角锥的多面体也可以称为三角化八面体。大三角化八面体的是一个拓朴结构与三角化八面体相同的多面体。三角化八面体是由正八面体的每个面上加入角锥构成,而大三角化八面体则是在正八面体的每个面中加入穿过对面的面的倒角锥而成,这种在面上加入倒角锥的做法使其与三角化八面体有一样的拓朴结构,几何上的差异在于,大三角化八面体和三角化八面体一个是向外加入角锥、一个是向内加入角锥。星形八面体一般是指由两个正四面体组合成的复杂多面体,复杂多面体是指该多面体有出现面与面相交的多面体,而简单多面体则是面与面没有自相交情况的多面体。对于与星形八面体外形相同的简单多面体则也可以视为在正八面体每个面阶贴上三角锥的结果,其贴上的三角锥为正四面体。这样子的组合也可以看做是正八面体四维锥(英语:Octahedral pyramid)的展开图。在图论的数学领域中,与三角化八面体相关的图为小三角化八面体图(Small Triakis Octahedral Graph),是三角化八面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。小三角化八面体图有36条边和14个顶点,其中度为3的顶点有8个;度为8的顶点有6个。

相关

  • 心因性暴食症神经性暴食症(英语:Bulimia nervosa)又译心因性暴食症或者神经性贪食症,一般简称为暴食症,是一种进食障碍,其特征为患者会尝试在暴饮暴食(英语:Binge eating)后试图进行净空行为。暴
  • 慈惠医护管理专科学校慈惠医护管理专科学校(Tzu Hui Institute of Technology)是一所位于台湾屏东县南州乡的专科学校,为台湾最南端之大专校院,目前有9个学科及通识教育中心,毕业后,授予副学士学位。该
  • 奶制品奶制品,奶类制品的简称,亦称乳制品、乳类食品或奶食品,以奶为基本原料加工而成的食品。除各种直接使用奶制成的饮料外还包括通过发酵获得的食品(奶酪和奶油)以及对奶进行干燥或者
  • 流纹岩流纹岩是一种喷出岩,是火山的酸性喷出岩石,其化学成分与花岗岩相同,由于形成时冷却速度较快使矿物来不及结晶,二氧化硅含量大于69%,其斑晶主要为正长石和石英组成,晶体形状为方形
  • 亚节组 (拉丁语:Sectio 英语:Section)是一个植物学生物分类等级。处于属以下,种以上 。如果存在亚属,则组低于亚属。如果存在系,则系在组之下。 部分组又可以再分成亚组。组通常用来帮
  • FAO联合国粮食及农业组织(法语:L'Organisation des Nations Unies pour l'Alimentation et l'Agriculture,缩写为ONUAA; 英语:Food and Agriculture Organization of the United Na
  • 说不出的爱2004年10月16日 (2004-10-16)-2005年6月5日 (2005-06-05)《致父亲母亲》((朝鲜语:부모님 전상서/父母 全尚書 Bumonim-Jeonsangseo;英文:Precious Family),为韩国KBS电视台由2004
  • 神经振荡神经振荡是中枢神经系统中存在的一种节律性,或是重复性的神经元活动。神经组织可以通过多种方式产生振荡,这种振荡主要是靠单个神经元或者神经元之间的相互作用引发。在单个神
  • 药王药王可以指:
  • 侗族(侗语作Gaeml, 宽式IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge