三角化八面体

✍ dations ◷ 2025-04-26 17:15:59 #三角化八面体
在几何学中,三角化八面体又称三角三八面体 是一种卡塔兰立体,其对偶多面体为截角立方体,可以视为在正八面体每个面上加入三角锥的结果 ,但由于有另一种多面体也是由正八面体每个面上加入三角锥的结果,为大三角化八面体,差别在于大三角化八面体是向内加入角锥,而此多面体向外加入角锥,为了区别两者差异,因此有时也会称此多面体为小三角化八面体。在矿物学中,这种形状又称为三八面体(英语:trisoctahedron),部分的矿石可以结晶成这种形状,例如萤石。三角化八面体是一个卡塔兰立体,为阿基米德立体——截角立方体的对偶多面体,因此具有面可递的性质。三角化八面体是一种二十四面体,由24个面、36条边和14个顶点组成,其中24个面为全等的等腰三角形,顶点可分为2种,一种为8个等腰三角形的公共顶点,另一种为3个等腰三角形的公共顶点。三角化八面体可以视为将正八面体各个面从中心切割成3个等腰三角形所形成的多面体。三角化八面体是菱形(正方形倾斜四十五度)四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。一个最短边长为1的三角化八面体,它的表面积为 3 7 + 4 2 {displaystyle 3{sqrt {7+4{sqrt {2}}}}} ,体积为 1 2 ( 3 + 2 2 ) {displaystyle {frac {1}{2}}(3+2{sqrt {2}})} 。三角化八面体由24个全等的等腰三角形组成。组成三角化八面体的等腰三角形的2个底角为arccos ( 2 4 + 1 2 ) {displaystyle scriptstyle {left({tfrac {sqrt {2}}{4}}+{tfrac {1}{2}}right)}} 约为31.4°,由三角形内角关系可知顶角约为117.2°,边长比为1:1: 2 + 2   2 {displaystyle {begin{matrix}{frac {2+{sqrt {2}} }{2}}end{matrix}}} 。若一个三角化八面体最短边长为2且几何中心位于原点,则其顶点坐标为:三角化八面体有3个特殊的正交投影,分别为于棱上投影、于8个等腰三角形的公共顶点上投影和于3个等腰三角形的公共顶点上投影。三角化八面体也可以表示为球面镶嵌,也可以透过施莱格尔投影(英语:Schlegel diagram),于平面上呈现。而其施莱格尔投影的结果在图论中是一种阿基米德对偶图,称为小三角化八面体图。三角化八面体出现在部分的艺术创作中,例如莫里兹·柯尼利斯·艾雪的艺术创作。部分小说也有使用三角化八面体进行创作,如休伊·库克(英语:Hugh Cook)的系列小说《黑暗时代的编年史(英语:Chronicles_of_an_Age_of_Darkness)》中的《希望之石与奇迹工人(英语:Chronicles of an Age of Darkness#The Wishstone and the Wonderworkers)》。除了艺术创作外,常见文化也有关于三角化八面体的使用,例如部分的魔术方块和骰子之外型。三角化八面体可以经由八面体透过三角化变换构造,即将正八面体每个面贴上三角锥来获得。其他也是由正八面体透过康威变换得到的多面体有:三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正多边形与正三角形交错组成的多面体或镶嵌图包括:类似前面提到的概念,三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正八边形与其他正多边形交错组成的多面体或镶嵌图包括:三角化八面体一般是指截角立方体的对偶多面体,但三角化八面体一词原意应为“三角化后的八面体”,换句话说,即在八面体的面上加入三角锥的多面体也可以称为三角化八面体。大三角化八面体的是一个拓朴结构与三角化八面体相同的多面体。三角化八面体是由正八面体的每个面上加入角锥构成,而大三角化八面体则是在正八面体的每个面中加入穿过对面的面的倒角锥而成,这种在面上加入倒角锥的做法使其与三角化八面体有一样的拓朴结构,几何上的差异在于,大三角化八面体和三角化八面体一个是向外加入角锥、一个是向内加入角锥。星形八面体一般是指由两个正四面体组合成的复杂多面体,复杂多面体是指该多面体有出现面与面相交的多面体,而简单多面体则是面与面没有自相交情况的多面体。对于与星形八面体外形相同的简单多面体则也可以视为在正八面体每个面阶贴上三角锥的结果,其贴上的三角锥为正四面体。这样子的组合也可以看做是正八面体四维锥(英语:Octahedral pyramid)的展开图。在图论的数学领域中,与三角化八面体相关的图为小三角化八面体图(Small Triakis Octahedral Graph),是三角化八面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。小三角化八面体图有36条边和14个顶点,其中度为3的顶点有8个;度为8的顶点有6个。

相关

  • 杜卡迪杜卡迪(Ducati Motor Holding S.p.A., NYSE:DMH)是一家意大利摩托车生产商,总部位于意大利的博洛尼亚。其产品由于卓越的性能以及意大利特色的设计而闻名。奥迪汽车在2012年4月
  • 通讯软件即时通信(Instant Messaging,简称IM)是一种透过网络进行实时通信的系统,允许两人或多人使用网络即时的传递文字消息、文件、语音与视频交流。通常以网站、电脑软件或移动应用程
  • 麦士蒂索人梅斯蒂索人(西班牙语:mestizo;葡萄牙语:mestiço),又译作麦士蒂索人或马斯提佐人,是西班牙语与葡萄牙语中的专有名词,曾于西班牙帝国与葡萄牙帝国使用,指的是欧洲人与美洲原住民祖先
  • 吴国雄吴国雄(1943年3月20日-),中国大气动力学和气候动力学家。1943年出生于广东潮阳。1966年毕业于南京气象学院。1983年获英国伦敦大学理学博士学位。1997年当选为中国科学院院士。
  • 正电在电磁学里,电荷(英语:electric charge)是物质的一种物理性质。称带有电荷的物质为“带电物质”。两个带电物质之间会互相施加作用力于对方,也会感受到对方施加的作用力,所涉及的
  • 太阳神太阳神的传说见于世界上许多的古老民族。太阳神代表着太阳或太阳星君,成为太阳人格化的神。
  • 田寮区田寮区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Tshâ
  • 波音747波音747,又称为“珍宝客机”(Jumbo Jet)亦是全世界首款生产出的宽体民用飞机,由美国波音民用飞机集团制造。波音747雏型的大小是1960年代被广泛使用的波音707的两倍,飞机翼展比莱
  • 虚拟专用网虚拟私人网络(英语:Virtual Private Network,缩写:VPN)是一种常用于连接中、大型企业或团体与团体间的私人网络的通讯方法。它利用隧道协议(Tunneling Protocol)来达到发送端认证、
  • Fungal BiologyFungal Biology是一个同行评审的科学期刊,由Elsevier出版,发表真菌学各方面的研究论文,也包括卵菌、黏菌等历史上曾经属于真菌之类群的相关研究。Fungal Biology于1896年创刊,当