三角化八面体

✍ dations ◷ 2025-11-17 11:20:38 #三角化八面体
在几何学中,三角化八面体又称三角三八面体 是一种卡塔兰立体,其对偶多面体为截角立方体,可以视为在正八面体每个面上加入三角锥的结果 ,但由于有另一种多面体也是由正八面体每个面上加入三角锥的结果,为大三角化八面体,差别在于大三角化八面体是向内加入角锥,而此多面体向外加入角锥,为了区别两者差异,因此有时也会称此多面体为小三角化八面体。在矿物学中,这种形状又称为三八面体(英语:trisoctahedron),部分的矿石可以结晶成这种形状,例如萤石。三角化八面体是一个卡塔兰立体,为阿基米德立体——截角立方体的对偶多面体,因此具有面可递的性质。三角化八面体是一种二十四面体,由24个面、36条边和14个顶点组成,其中24个面为全等的等腰三角形,顶点可分为2种,一种为8个等腰三角形的公共顶点,另一种为3个等腰三角形的公共顶点。三角化八面体可以视为将正八面体各个面从中心切割成3个等腰三角形所形成的多面体。三角化八面体是菱形(正方形倾斜四十五度)四边各加一个等腰三角形拼成的正八边形在立体几何中的推广。一个最短边长为1的三角化八面体,它的表面积为 3 7 + 4 2 {displaystyle 3{sqrt {7+4{sqrt {2}}}}} ,体积为 1 2 ( 3 + 2 2 ) {displaystyle {frac {1}{2}}(3+2{sqrt {2}})} 。三角化八面体由24个全等的等腰三角形组成。组成三角化八面体的等腰三角形的2个底角为arccos ( 2 4 + 1 2 ) {displaystyle scriptstyle {left({tfrac {sqrt {2}}{4}}+{tfrac {1}{2}}right)}} 约为31.4°,由三角形内角关系可知顶角约为117.2°,边长比为1:1: 2 + 2   2 {displaystyle {begin{matrix}{frac {2+{sqrt {2}} }{2}}end{matrix}}} 。若一个三角化八面体最短边长为2且几何中心位于原点,则其顶点坐标为:三角化八面体有3个特殊的正交投影,分别为于棱上投影、于8个等腰三角形的公共顶点上投影和于3个等腰三角形的公共顶点上投影。三角化八面体也可以表示为球面镶嵌,也可以透过施莱格尔投影(英语:Schlegel diagram),于平面上呈现。而其施莱格尔投影的结果在图论中是一种阿基米德对偶图,称为小三角化八面体图。三角化八面体出现在部分的艺术创作中,例如莫里兹·柯尼利斯·艾雪的艺术创作。部分小说也有使用三角化八面体进行创作,如休伊·库克(英语:Hugh Cook)的系列小说《黑暗时代的编年史(英语:Chronicles_of_an_Age_of_Darkness)》中的《希望之石与奇迹工人(英语:Chronicles of an Age of Darkness#The Wishstone and the Wonderworkers)》。除了艺术创作外,常见文化也有关于三角化八面体的使用,例如部分的魔术方块和骰子之外型。三角化八面体可以经由八面体透过三角化变换构造,即将正八面体每个面贴上三角锥来获得。其他也是由正八面体透过康威变换得到的多面体有:三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正多边形与正三角形交错组成的多面体或镶嵌图包括:类似前面提到的概念,三角化八面体是由等腰三角形组成,且对偶多面体由正八边形与正三角形交错组成。同样由等腰三角形组成,且对偶多面体由正八边形与其他正多边形交错组成的多面体或镶嵌图包括:三角化八面体一般是指截角立方体的对偶多面体,但三角化八面体一词原意应为“三角化后的八面体”,换句话说,即在八面体的面上加入三角锥的多面体也可以称为三角化八面体。大三角化八面体的是一个拓朴结构与三角化八面体相同的多面体。三角化八面体是由正八面体的每个面上加入角锥构成,而大三角化八面体则是在正八面体的每个面中加入穿过对面的面的倒角锥而成,这种在面上加入倒角锥的做法使其与三角化八面体有一样的拓朴结构,几何上的差异在于,大三角化八面体和三角化八面体一个是向外加入角锥、一个是向内加入角锥。星形八面体一般是指由两个正四面体组合成的复杂多面体,复杂多面体是指该多面体有出现面与面相交的多面体,而简单多面体则是面与面没有自相交情况的多面体。对于与星形八面体外形相同的简单多面体则也可以视为在正八面体每个面阶贴上三角锥的结果,其贴上的三角锥为正四面体。这样子的组合也可以看做是正八面体四维锥(英语:Octahedral pyramid)的展开图。在图论的数学领域中,与三角化八面体相关的图为小三角化八面体图(Small Triakis Octahedral Graph),是三角化八面体之边与顶点的图(英语:1-skeleton),是一个阿基米德对偶图。小三角化八面体图有36条边和14个顶点,其中度为3的顶点有8个;度为8的顶点有6个。

相关

  • 社会支持理论社会支持(英语:social support)是一个心理学术语,是指个人可以感受、察觉或接受到来自他人的关心或协助(Reber, 1995)。社会支持也被分为工具性支持(Instrumental support)以及情
  • 浊音语音学中,将发音时声带振动的音称为浊音(又称有声音,英语:voiced sound),声带不振动的音称为清音(又称无声音,英语:voiceless sound)。辅音(子音)有清有浊,而多数语言中元音(母音)均为浊音,
  • 化学家化学家一般是指从事于近现代化学研究的科学家,有专职和兼职之分,在英国亦可指药剂师。化学家们会对化学元素、原子、分子及它们如何互相作用作出研究。化学家们研究并测试药物
  • 托利弗县托利弗县(Taliaferro County, Georgia)是美国乔治亚州中北部的一个县。面积506平方公里。根据美国2000年人口普查,共有人口2,077人,2005年人口1,826人,为全州最少。县治克劳福德
  • 大区大区(法语:région)是法国行政区划的第一级单位,下分为省。法国共有18个大区,其中13个位于法国本土(其中科西嘉地位较特殊,称为“领土集体”collectivité territoriale),其余5个则位
  • 奥尔吉耶德·监凯维奇奥尔吉耶德·塞西尔·监凯维奇,CBE(英语:Olgierd Cecil Zienkiewicz,也译作奥尔吉耶德·辛克维奇;1921年5月18日-2009年1月2日),英国籍波兰裔学者,工程力学与计算力学专家,被视为有限
  • 抑制抑制(inhibition),在神经科学中指某种输入对神经元的膜电位的一种影响,这种影响使膜电位超极化,即向负值移动。抑制性输入降低神经元发生冲动的可能性。抑制性输入可来自多种途径
  • 禧妃禧妃(19世纪-1877年),名海棠春,姓察哈喇氏。包衣管领下辛者库人。满洲正黄旗瑞溥管领下厨役常顺之女。清朝咸丰帝妃嫔。察哈喇氏经内务府选秀入宫,成为长春宫某妃位下的一名宫女。
  • 爪蟾属爪蟾属(学名:Xenopus),统称滑爪蟾,是撒哈拉以南非洲的一属水生青蛙,其下共有18个物种。当中最为人所知的是非洲爪蟾,经常作为科学研究的模式生物。爪蟾属的瞳孔呈圆形,眼睛位于头顶,
  • 安加拉河安加拉河(俄语:Ангара)是一条长1,779公里的河流,在俄罗斯东南西伯利亚的伊尔库茨克州和克拉斯诺亚尔斯克边疆区,是流出贝加尔湖的唯一一条河,也是叶尼塞河的主要支流之一。