传递函数

✍ dations ◷ 2025-04-02 09:08:09 #电路,信号处理,控制理论,控制论,函数

在工程中,传递函数(也称系统函数、转移函数或网络函数,画出的曲线叫做传递曲线)是用来拟合或描述黑箱模型(系统)的输入与输出之间关系的数学表示。

通常它是零初始条件和零平衡点下,以空间或时间频率为变量表示的线性时不变系统(LTI)的输入与输出之间的关系。然而一些资料来源中用“传递函数”直接表示某些物理量输入输出的特性,(例如二端口网络中的输出电压作为输入电压的一个函数)而不使用变换到S平面上的结果。

传递函数通常用于分析诸如单输入、单输出的滤波器系统中,主要用在信号处理、通信理论、控制理论。这个术语经常专门用于如本文所述的线性时不变系统(LTI)。实际系统基本都有非线性的输入输出特性,但是许多系统在标称参数范围内的运行状态非常接近于线性,所以实际应用中完全可以应用线性时不变系统理论表示其输入输出行为。

简单说明一下,下面的描述都是以复数 s = σ + j ω {\displaystyle s=\sigma +j\cdot \omega } 和 是 的适当的光滑函数。 是相关函数空间上定义的,将 变换为 的算子。这种方程可以用于以强迫函数 为变量约束输出函数 。传递函数写成算子 F = u {\displaystyle F=u} 的右逆,因为 L ] = r {\displaystyle L]=r}

在输入函数 的形式也为 r ( t ) = e s t {\displaystyle r(t)=e^{st}} 的定义需要注意区分实数和复数的差异。这是受到 表示增益,而用 表示相位滞后惯例的影响。传递函数的其他定义还有例如 1 / p L ( i k ) {\displaystyle 1/p_{L}(ik)}

设普通线性非时变系统的输入为 x ( t )   {\displaystyle x(t)\ } ,输出为 y ( t )   {\displaystyle y(t)\ } ,并且 x ( t )   {\displaystyle x(t)\ } y ( t )   {\displaystyle y(t)\ } 的拉普拉斯变换为

那么输出与输入之间通过传递函数 H ( s )   {\displaystyle H(s)\ } 发生关系

并且传递函数为

在信号分析与处理中,通常感兴趣的系统的频率响应,这时候经常使用频响函数来表示系统对于不同频率谐波的响应特征。频响函数通常用傅里叶变换表示,傅里叶变换是 s = j ω {\displaystyle s=j\omega } 的双边拉普拉斯变换的一个特例。频响函数实际上是线性系统的稳态响应分量,只有再加上瞬态响应分量,才构成系统的全响应,即系统的传递函数。

当一个振幅为 | X |   {\displaystyle |X|\ } 、角频率为 ω   {\displaystyle \omega \ } 以及相位为 arg ( X )   {\displaystyle \arg(X)\ } 的谐波信号

输入到线性时不变系统的时候,那么对应的输出为:

注意,在线性非时变系统中,谐波信号输入频率 ω   {\displaystyle \omega \ } 没有发生变化,只有三角函数的振幅和相位经过系统发生了改变。相位延迟(也就是传递函数引起的与频率相关的正弦曲线延迟)为:

群延迟(也就是传递函数引起的与频率相关的正弦曲线包络线延迟)通过计算相位延迟对于角频率 ω   {\displaystyle \omega \ } 的导数得到,

频率响应 H ( j ω ) {\displaystyle H(j\omega )} 可分解为幅频响应 A ( ω ) {\displaystyle A(\omega )} 或增益 G ( ω ) {\displaystyle G(\omega )} 以及相频响应 ϕ ( ω ) {\displaystyle \phi (\omega )}

并可由此绘出系统的幅频特性曲线与相频特性曲线,总称波特图。

频率响应也可以按其实部与虚部分解表示为:

并由此绘出系统频率响应的奈奎斯特曲线。

不管是使用拉普拉斯变换还是傅立叶变换,它们都将时间域上系统响应的卷积运算转化为对应的复数域或频域上的代数(频率相乘,相位相加)运算,并且可以直观的揭示出系统对于信号频率的作用。

在控制工程和控制理论中,传递函数是从拉普拉斯变换推导出来的。传递函数是经典控制工程中的一个主要工具,但是,在分析多输入多输出(MIMO)系统的时候它就显得很笨拙了,在分析这样的系统的时候大部分被状态空间表示所代替。尽管这样,经常也可以从任意的线性系统得到传递矩阵用于分析它的动态及其它特性:传递矩阵中的每个元素都是与特定输入和特性输出相关的一个传递函数。

在光学中调制传递函数描述的是光学系统传递对比度的能力。

例如,如果一系列的黑白交替条纹以一个特定的空间频率画出来,那么当观察这些条纹的时候,图像质量可能发生退化。白色的条纹看起来变暗了,而黑色的条纹看起来变亮了。

在特定空间频率的调制传递函数定义为:

其中调制 (M), 是根据下式从图像或者光源亮度中导出来的:

许多非线性成分(如张弛振荡器)就不存在传递函数,但可以用描述函数来近似。

相关

  • 邻苯二胺邻苯二胺是一个芳香胺,分子式为C6H4(NH2)2。它是苯二胺的异构体之一,两个氨基处于苯环的邻位(1,2-),其他两个异构体是间苯二胺和对苯二胺。邻苯二胺由邻硝基苯胺的硫化钠还原或催
  • 木偶玩偶一词泛指模仿人或动物造型的赏玩物品,其中形若人类的称为人偶。人偶、玩偶的外型面貌,从抽象到拟真,涵盖不同种族、年龄、性别的外型,因各国、各民族的需求与文化背景而发展
  • 阋卫一阋卫一—迪丝诺美亚(Dysnomia),正式名称(136199)厄里斯 I 迪丝诺美亚((136199) Eris I Dysnomia),是太阳系第二大矮行星阋神星的一颗卫星。它是被美国天文学家米高·布朗于2005年发
  • 五加皮五加(学名:Eleutherococcus gracilistylus)为五加科五加属的植物。灌木;掌状复叶,在长枝上互生,短枝上簇生;小叶常为5枚;夏季开黄绿色花,伞形花序;黑色球形核果。五加主要产于中国的中
  • 美国战争部美国战争部(United States Department of War)是一个已经废除的美国内阁部级单位,负责管辖美国陆军并维护其装备。在1798年美国海军部建立和1947年美国空军部建立之前,亦曾负责
  • 加斯帕尔·德·古兹曼加斯帕尔·德·古兹曼-皮门特尔·里韦拉-贝拉斯科·德·托瓦尔,通称“奥利瓦雷斯伯-公爵”(西班牙语:Gaspar de Guzmán y Pimentel Ribera y Velasco de Tovar,Conde-duque de
  • 陈幼良陈幼良(1565年-1624年),字宇初,江西德化人,明朝政治人物。万历十九年(1591年)辛卯科江西乡试第一名举人。万历二十年(1592年)联捷壬辰科第三甲第二百二十三名进士。授金华府推官。。
  • 陈杭陈杭,中国女植物学家,园艺学家,1990年获颁英国皇家园艺学会维希特金奖(园艺学著名国际奖章)。出生于安徽省广德县。1949年,考入国立浙江大学园艺系。1953年,毕业生于浙江农学院(今浙
  • 韩保贞韩保贞,表字永吉,中国五代十国时期政权后蜀官员,潞州长子(今山西省长子县)人。韩保贞为人有胆识,投军后辗转至孟知祥,为押牙。孟知祥建国后蜀,任命韩保贞为丰德库使,兼广义库使。孟昶
  • 图灵焦油坑图灵焦油坑(英语:Turing tarpit)是指功能过于灵活而难以学习和使用的程序设计语言或计算机接口。 1982年艾伦·佩利在《编程警句(英语:Epigrams on Programming)》中发明了这一术