首页 >
Md
✍ dations ◷ 2025-06-27 13:52:58 #Md
5f13 7s22, 8, 18, 32, 31, 8, 2主条目:钔的同位素钔是一个人工合成元素,化学符号为Md(曾作Mv),原子序是101。钔是锕系元素中具有放射性的超铀金属元素,在锕系元素排倒数第三位、在超铀元素中排第九。它是第一个不能以中子轰击大量的较轻元素来制造的元素,只能透过粒子加速器,以带电粒子轰击较轻元素制成。已知的钔同位素共有16种,最稳定的是258Md,半衰期达51天;不过寿命较短的256Md(半衰期1.17小时)反而较常使用于化学用途,因为它可以大量生产。钔是在1955年时,以α粒子撞击锿元素时发现的,至今仍是依同样方法制造钔。它的名称Mendelevium得自元素周期表之父德米特里·伊万诺维奇·门捷列夫,国际纯粹与应用化学联合会(IUPAC)承认了这个名称,但未接受最初提出的符号Mv,到1963年改用Md。使用几微克质量的锿-253,每个小时就可以产出超过一百万的钔原子。钔的化学反应是典型的晚期锕系元素,+3氧化态较泛用,但+2氧化态亦可。由于少量生产的钔及其所有同位素的半衰期都相对较短,目前在基础科学研究之外没有任何用途。研究人员发现,钔的氧化态除了有一般锕系元素的+3以外,还有中等稳定的+2。其+3氧化态在水溶液中为主导的状态(所用方法为色谱法)。钔甚至有时表现出+1的氧化态。使用256Md能研究钔在水溶液中的化学特性。其外钔没有任何已知应用,而至今也只合成了微量的钔元素。其他的同位素也已被发现,它们都具有放射性,其中258Md最为稳定,半衰期约为55日。另外的同位素的质量数从248到258不等,半衰期从几秒钟到51天不等。最初的256Md半衰期为87分钟。Johansson和Rosengren于1975年预测钔金属的化合价会主要为2,相似于铕(Eu)和镱(Yb),而非3。在微量钔元素上用热色谱法的研究指出,钔确实形成化合价为2的金属。在经验公式的帮助下,其金属半径预测为0.194 ± 0.010 nm。估计的升华热介乎134-142 kJ/mol之间。在发现钔之前,在水溶液中最稳定状态的化合价为3。因此,它的化学特性预计与其他3+锕系元素及镧系元素的相似。在阳离子树脂交换柱中,化合价为3的锕系元素中,钔在镄前一点洗脱出来,证明了该预测。之后所发现到的有,不溶的钔氢氧化物和氟化物,与化合价为3的镧系元素共同沉淀。该方法证实了钔的化合价为3,且半径小于镄。利用经验公式所预测的Md3+的离子半径为0.0192 nm,配位数为6。再利用化合价为3的稀土元素的已知离子半径,加上配位系数的对数和离子半径之间的线性关系,预计Md3+的平均离子半径为0.089 nm;而用实验模型及玻恩-哈伯循环所计算的水化热为– (3654 ± 12) kJ/mol。在具还原性的环境下,钔表现出不寻常的化学特性。与BaSO4的共沈和使用HDEHP的溶剂萃取色谱实验在不同的还原剂中进行。结果显示,Md3+在水溶液中能够容易还原为稳定的Md2+。在水加乙醇的溶剂中,钔也可以还原为化合价为1的状态。Md+和化合价为2的离子的共结晶是由于混合晶体的产生。Md+的离子半径为0.117 nm。从Md3+到Md4+的氧化反应并未成功。钔的合成首次由阿伯特·吉奥索、格伦·西奥多·西博格、Gregory R. Choppin、Bernard G. Harvey及Stanley G. Thompson(英语:Stanley Gerald Thompson)(组长)在1955年初于加州大学伯克利分校成功进行。该团队通过以α粒子撞击253Es创造了256Md(半衰期为87分钟),反应在伯克利放射实验室的60寸回旋加速器(256Md是单个原子逐一合成的第一个同位素)。元素101是第九个被合成的超铀元素。钔的首17个原子是用离子交换吸附洗脱法分离并分析的。过程当中,钔的化学表现与铥的相似,自然产生的铥是钔的同系物。整个钔的发现依据只建立在17颗原子上。合成反应中的253Es撞击目标可以在爱达荷州阿科反应站的材料测试反应器中由较轻同位素的放射产生。该目标仅仅有109个放射性高的253Es原子(半衰期为20.5天)。在通过阳离子树脂交换柱后,洗脱出的钔得到分离及化学辨认。在估计该合成方法是否可行时,实验团队作出了粗略地计算。将会产生的原子数量,约为撞击目标的原子数量,乘以截面,乘以离子束强度,乘以撞击时长。结果为每次试验会产生1颗原子。因此在最佳情况下,预测每一次试验会制造出1颗元素101的原子。这样的计算证明实验是可行的。钔的合成使用了由阿伯特·吉奥索引入的反冲技术。目标元素置于与粒子束相反的位置,反冲的原子落在捕集箔上。所用的反冲目标用了由Alfred Chetham-Strode研发的电镀技术生产。这种方法的产量很高,而这在产物是极为罕有的锿目标材料的情况下是必须的。反冲目标由109个253Es组成,通过电镀铺在一张薄金箔上(也能使用Be、Al和Pt)。在位于伯克利的回旋加速器中,能量为41 eV的α粒子撞击该目标,粒子束强度极高,在0.05 cm2的面积内每秒有6∙1013颗粒子。目标用水或液态氢冷却。在气态大气层中使用氦会减慢反冲原子的速度。该气体可以通过小孔排出反应间,并形成气体射流。一部分非挥发产物原子经由射流,积累在箔的表面。该箔片可以定期更换。发现钔的实验所用的反应为:
253Es + 4He → 256Md + 1n。从采集箔片上取下钔原子时可使用酸浸蚀法或完全溶解薄金箔。钔的纯化和离析能够通过几种方式进行。从镧系裂变产物中分离出化合价为3的锕系元素时,能够使用阳离子树脂交换柱,其中用盐酸饱和的90%水10%乙醇溶液作为洗脱液。要从采集箔片上快速采下钔,可以使用阴离子交换色谱法,其中用6M盐酸作为洗脱液。金则会在钔与其他锕系元素通过时留在柱子上。最后还需要从其他化合价为3的锕系元素中分离出Md3+。分离元素99、100和101时,使用经过铵盐处理的阳离子树脂交换柱(陶瓦士50交换柱)。钔在镄之前一点洗脱出来,以此作出了钔的化学识别。在一系列重复的试验中,实验团队使用的洗脱液为α-羟基异丁酸(α-HIB)。若使用“气体射流”的方法,则首两步可以省略。用这一方法,可以在目标的几十米以外在一秒以内采集并转移个别产物原子。要有效地长距离转移原子,需要在气体射流中有较大的粒子(如氯化钾喷雾)。在制造和分离锿后元素时常使用这一方法。另一个分离3+锕系元素的方法是溶剂萃取色谱法,用二(2-乙基已基)膦酸为固定有机相,而HNO3为流动水溶相。锕系元素的洗脱顺序与使用阳离子树脂交换柱时相反。用这一方法的优胜之处是,分离出来的钔不含有机错化剂,用树脂交换柱分离的则有。缺点是,钔要在镄之后,到整个顺序的后期才会洗脱。钔并没有被直接探测到,而是经过观察自发裂变产物256Fm探测的。这些事件都发生于1955年2月19日。第四次录得的事件正式证实了第101号元素钔的化学特征。进一步的分析及实验显示,该同位素的质量数为256,并通过电子捕获进行衰变,半衰期1.5小时。已辨认的16个钔原子质量数在245到260之间,最稳定的为半衰期为51.5天的258Md、31.8天的260Md及5.52小时的257Md。其余的放射性同位素的半衰期都小于97分钟,大部分都小于5分钟。该元素还有5个亚稳态,其中最稳定的为258mMd(半衰期为58分钟)。钔同位素的原子量从 245.091 u(245Md)到260.104 u(260Md)。
相关
- 义膜性喉炎哮吼(Croup),又称咽喉气管支气管炎(laryngotracheobronchitis)为一种呼吸道感染症,通常是由病毒感染所诱发。感染会引致气管内肿胀,并影响正常呼吸,而导致咳嗽会类似狗吠声,其他症状
- 消化道出血消化道出血(英语:gastrointestinal bleed (GI bleed)、gastrointestinal hemorrhage)是口腔至直肠之间任何部位的消化道出血。当短时间内大量出血时,可能导致的症状包含呕血、吐
- 氯霉素氯霉素(Chloramphenicol)是一种抗生素,可用于治疗许多细菌感染症状,包括脑膜炎、瘟疫、霍乱和伤寒等。只有在不能使用其他较安全的抗生素时,才会建议用氯霉素。治疗期间,建议每两
- 烟酸维生素 B3,维生素 PP烟酸(英语:niacin、nicotinic acid,也称维他命B3、维他命PP、吡啶-3羧酸),分子式:C6H5NO2,耐热,能升华。首次描述于Hugo Weidel于1873年对尼古丁的研究。它是人体
- 抗菌药抗细菌药(英语:antibacterial)也称为“抗细菌剂”,是一类用于抑制细菌生长或杀死细菌的药物。在不引起歧义的情况下,抗细菌药也可简称为“抗菌药”,包括抗生素(英语:antibiotic) 由微
- 放牧场放牧场 (来自拉丁语 pastus,为pascere的过去分词,意指 "饲养") 为提供放牧的土地。狭义的定义系指圈围的农地,供家畜如马部、家牛、绵羊、家猪等吃草,种植做作物包括粮草(英语:for
- 弓形虫弓形虫(学名:Toxoplasma gondii),亦称为弓浆虫、弓虫,或连同种小名一起称作龚地弓形虫,是肉孢子虫科弓形虫属的唯一物种,属于寄生性生物。已确定的宿主是猫,而弓形虫的携带者包括了
- 音乐美国音乐反映了该国多元种族混合的文化。该国音乐受到西非、爱尔兰(英语:music of Ireland)、苏格兰(英语:music of Scotland)和欧洲大陆音乐的影响,最出名的音乐类型包括爵士、蓝
- 地方病地方性流行(Endemic)又称地方病或风土病,在流行病学中,指毋须从外界输入,便能在人口内持续出现的疾病,例如:在英国,水痘是地方性流行病,而疟疾并不是。虽然每年在英国都会出现数宗本
- 日本福岛核电事故除特别注明外,此条目或章节的时间均以日本标准时间(UTC+9:00)为准。福岛第一核电站事故(日语:福島第一原子力発電所事故/ふくしまだいいちげんしりょくはつでんしょじこ Fukushim