随机过程

✍ dations ◷ 2025-11-19 01:30:23 #随机过程
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。设 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} 为一概率空间,另设集合T为一指标集合。如果对于所有 t ∈ T {displaystyle tin T} ,均有一随机变量 ξ t ( ω ) {displaystyle xi _{t}(omega )} 定义于概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} ,则集合 { ξ t ( ω ) | t ∈ T } {displaystyle {xi _{t}(omega )|tin T}} 为一随机过程。通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数 ω {displaystyle omega } 只为分辨同类随机过程中的不同实例,如在上文下中不构成误会,通常略去。例如表达单次元布朗运动时,常以 W t {displaystyle W_{t}} 表达,但若考虑两同时进行布朗运动的粒子,则会分别以 W t ( 1 ) {displaystyle W_{t}(1)} 和 W t ( 2 ) {displaystyle W_{t}(2)} (或作 W 1 ( t ) {displaystyle W_{1}(t)} 和 W 2 ( t ) {displaystyle W_{2}(t)} )表示。为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。从爱因斯坦的文章的摘录描述了随机模型的基本原理:"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小""我们引入一时间间隔 τ {displaystyle tau } 蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔 τ {displaystyle tau } 蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。在概率论的测量理论中,需要解决一个问题。如何构造一个Σ-代数的所有功能空间的衡量子集,然后把它有限化。为了解决这个问题,采用了 Kolmogorov扩展方法。假定所有函数f的空间概率测度: f : X → Y {displaystyle f:Xto Y} 存在,那么它可以被用来指定有限维随机变量 f ( x 1 ) , … , f ( x n ) {displaystyle f(x_{1}),dots ,f(x_{n})} .的联合概率分布。现在从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为 f ( x 1 ) , … , f ( x n − 1 ) {displaystyle f(x_{1}),dots ,f(x_{n-1})} 。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标 [ f ( x 1 ) , … , f ( x n ) ] {displaystyle } 被限制在 Y n {displaystyle Y_{n}} 中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。在测度理论,如果我们有一个可数无限集合测集,所有的人都那么的联合和交集是可测集。对于我们而言,这意味着是/否依赖于可数个坐标的问题有一个概率的答案。给定一个概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} , 过滤是一个弱增长对 σ-代数 在 Ω {displaystyle Omega } , { F t , t ∈ T } {displaystyle {{mathcal {F}}_{t},tin T}} 集合一些全序集T,上界由 F {displaystyle {mathcal {F}}} 决定。即对于 s,t   ∈ T {displaystyle in T} 且 s < t, 有给定一个随机过程 X = { X t : t ∈ T } {displaystyle X={X_{t}:tin T}} 。在这个过程中,需要过滤这里的 F t {displaystyle {mathcal {F}}_{t}} .这个通过 X s {displaystyle X_{s}} 和时间s = t产生。举个例子, F t = σ ( { X s − 1 ( A ) : s ≤ t , A ∈ Σ } ) {displaystyle {mathcal {F}}_{t}=sigma ({X_{s}^{-1}(A):sleq t,Ain Sigma })} 一个随机过程总是适应其自然过滤。

相关

  • 红霉素红霉素(拉丁语:Erythromycin)是一种大环内酯类的抗生素,可用于治疗呼吸道感染、皮肤感染(英语:skin infections)、衣原体菌感染(拉丁语:chlamydia infections),以及梅毒。本品也可用于
  • 肝功能试验肝功能测试是为了解病患肝脏的状态,设计而成的临床生化学实验室血液检测方法的总称。相关测试参数包括:PT/INR(凝血酶原时间/国际标准化比值)、aPTT、白蛋白、胆红素(直接和间接)、
  • 侏儒症侏儒症(英语:Dwarfism)是指人、动物或植物极端矮小的一种状态。以前在日常生活和医学上,任何类型的人明显矮小都可称为侏儒症。而今,这一名词只限于极端矮小且身体不相称的人,通常
  • 麻风分枝杆菌麻风杆菌也称为韩森氏杆菌,是一种可引起麻风病的分支杆菌,菌体呈短小棒状或稍弯曲,长约2-6µm,宽约0.2-0.6µm,抗酸染色呈红色(抗酸性),革兰氏染色呈阳性,好氧菌。于1873年由挪威医生
  • 卤代烷烃卤代烷烃或称卤代烷,是指烷烃分子中的一个或多个氢原子被卤素原子(氟、氯、溴、碘)取代的有机化合物,属于卤代烃。天然存在的卤代烃种类不多,大多数卤代烃属于合成产物。卤代烃一
  • 美国国家科学院期刊《美国国家科学院院刊》(英语:Proceedings of the National Academy of Sciences of the United States of America,通常简称为 PNAS;PNAS USA)是美国国家科学院的官方学术周刊。
  • 雌酮雌酮(英语:Estrone或oestrone,E1,或译为雌酚酮、雌激素酮)是一种较弱的雌性甾体性激素,是三种主要的内源性雌激素之一,另外两种为雌二醇和雌三醇。雌酮等雌激素的生物合成从胆固醇
  • 新鲜冷冻血浆新鲜冷冻血浆(fresh frozen plasma, FFP)为一从全血制备而成的血液制品,一般是在采集全血后八小时内分离制备,用于治疗体内凝血因子过低(INR>1.5)或是血浆蛋白过少之患者,也做为血
  • 希拉里·怀特哈尔·普特南希拉里·怀特哈尔·普特南(英语:Hilary Whitehall Putnam,1926年7月31日-2016年3月13日),美国哲学家、数学家与计算机科学家,20世纪60年代分析哲学的重要人物,特别在心灵哲学、语言
  • 法定假日公众假日,又常被称为法定假日、公休假、国定假日、公共假期、法定假期、劳工假期、工厂假期、法定节假日,泛指被法律所承认的通用的假日。这种假日被立法或行政机关,依法律或法