首页 >
随机过程
✍ dations ◷ 2025-08-08 01:43:28 #随机过程
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。设
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
为一概率空间,另设集合T为一指标集合。如果对于所有
t
∈
T
{displaystyle tin T}
,均有一随机变量
ξ
t
(
ω
)
{displaystyle xi _{t}(omega )}
定义于概率空间
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
,则集合
{
ξ
t
(
ω
)
|
t
∈
T
}
{displaystyle {xi _{t}(omega )|tin T}}
为一随机过程。通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数
ω
{displaystyle omega }
只为分辨同类随机过程中的不同实例,如在上文下中不构成误会,通常略去。例如表达单次元布朗运动时,常以
W
t
{displaystyle W_{t}}
表达,但若考虑两同时进行布朗运动的粒子,则会分别以
W
t
(
1
)
{displaystyle W_{t}(1)}
和
W
t
(
2
)
{displaystyle W_{t}(2)}
(或作
W
1
(
t
)
{displaystyle W_{1}(t)}
和
W
2
(
t
)
{displaystyle W_{2}(t)}
)表示。为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。从爱因斯坦的文章的摘录描述了随机模型的基本原理:"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小""我们引入一时间间隔
τ
{displaystyle tau }
蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔
τ
{displaystyle tau }
蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。在概率论的测量理论中,需要解决一个问题。如何构造一个Σ-代数的所有功能空间的衡量子集,然后把它有限化。为了解决这个问题,采用了 Kolmogorov扩展方法。假定所有函数f的空间概率测度:
f
:
X
→
Y
{displaystyle f:Xto Y}
存在,那么它可以被用来指定有限维随机变量
f
(
x
1
)
,
…
,
f
(
x
n
)
{displaystyle f(x_{1}),dots ,f(x_{n})}
.的联合概率分布。现在从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为
f
(
x
1
)
,
…
,
f
(
x
n
−
1
)
{displaystyle f(x_{1}),dots ,f(x_{n-1})}
。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标
[
f
(
x
1
)
,
…
,
f
(
x
n
)
]
{displaystyle }
被限制在
Y
n
{displaystyle Y_{n}}
中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。在测度理论,如果我们有一个可数无限集合测集,所有的人都那么的联合和交集是可测集。对于我们而言,这意味着是/否依赖于可数个坐标的问题有一个概率的答案。给定一个概率空间
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
, 过滤是一个弱增长对 σ-代数 在
Ω
{displaystyle Omega }
,
{
F
t
,
t
∈
T
}
{displaystyle {{mathcal {F}}_{t},tin T}}
集合一些全序集T,上界由
F
{displaystyle {mathcal {F}}}
决定。即对于 s,t
∈
T
{displaystyle in T}
且 s < t, 有给定一个随机过程
X
=
{
X
t
:
t
∈
T
}
{displaystyle X={X_{t}:tin T}}
。在这个过程中,需要过滤这里的
F
t
{displaystyle {mathcal {F}}_{t}}
.这个通过
X
s
{displaystyle X_{s}}
和时间s = t产生。举个例子,
F
t
=
σ
(
{
X
s
−
1
(
A
)
:
s
≤
t
,
A
∈
Σ
}
)
{displaystyle {mathcal {F}}_{t}=sigma ({X_{s}^{-1}(A):sleq t,Ain Sigma })}
一个随机过程总是适应其自然过滤。
相关
- 红霉素红霉素(拉丁语:Erythromycin)是一种大环内酯类的抗生素,可用于治疗呼吸道感染、皮肤感染(英语:skin infections)、衣原体菌感染(拉丁语:chlamydia infections),以及梅毒。本品也可用于
- 埃博拉病毒埃博拉病毒属(学名:Ebolavirus)是丝状病毒科的其中一种病毒,可导致埃博拉出血热,罹患此病可致人于死,包含数种不同程度的症状(包括恶心、呕吐、腹泻、肤色改变、全身酸痛、体内出血
- PVC聚氯乙烯(英语:Polyvinyl Chloride,缩写:PVC)是氯乙烯经加成聚合反应得到的的高分子材料。是聚乙烯和聚丙烯之后,第三种最广泛生产的合成塑胶聚合物。聚氯乙烯有两种基本形式:硬性
- 联合国人口基金联合国人口基金(英语:United Nations Population Fund,简称UNFPA)是联合国一个专门机构,其使命是促进所有人健康生活和平等机会的权利。作为一个志愿性的基金机构,联合国人口基金
- 微孢子虫纲微孢子虫(学名:Microsporidia)为罗兹菌门下的一纲。它是由孢子形成的单细胞寄生虫。目前多于一百万种微孢子虫中的1500种版命名。微孢子虫只能寄生于动物宿主。大部分的动物物
- Ho4f11 6s22, 8, 18, 29, 8, 2蒸气压第一:581.0 kJ·mol−1 第二:1140 kJ·mol−1 第三:2204 kJ·mol主条目:钬的同位素钬(旧译作錵)是一种化学元素,它的化学符号是Ho,它的原子序数是
- 磺胺剂磺胺类药物(Sulfonamides)是一类人工合成的抗菌药物,这类药物都是以对氨基苯磺酰胺(磺胺)为母体发展而来,因此得名。磺胺类药物抗菌谱较广,对大部分革兰氏阴性菌和革兰氏阳性菌均有
- 前体B细胞淋巴细胞白血病前体B细胞淋巴细胞白血病(Precursor B-cell lymphoblastic leukemia)是淋巴白血病(Lymphoid leukemia)的一种形式,大多数的B细胞淋巴母细胞(Lymphoblast、未成熟的白血球)被
- 事实事实(英语:Fact)可以指在过去和现在被验证且中立的信息,在科学中指可证明的概念。传闻不可当作事实。确认事实的真实性的过程,称为事实查核英文的“Fact”一词来自拉丁文中的Fact
- 超声造影成像超声造影成像是超声造影剂在传统超声成像中的应用。超声造影剂靠声波在不同介质的交界面反射的方式不同来增强对比。这种交界面可以是小气泡的表面,或者其它更加复杂的结构。