随机过程

✍ dations ◷ 2024-12-22 18:32:18 #随机过程
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。设 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} 为一概率空间,另设集合T为一指标集合。如果对于所有 t ∈ T {displaystyle tin T} ,均有一随机变量 ξ t ( ω ) {displaystyle xi _{t}(omega )} 定义于概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} ,则集合 { ξ t ( ω ) | t ∈ T } {displaystyle {xi _{t}(omega )|tin T}} 为一随机过程。通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数 ω {displaystyle omega } 只为分辨同类随机过程中的不同实例,如在上文下中不构成误会,通常略去。例如表达单次元布朗运动时,常以 W t {displaystyle W_{t}} 表达,但若考虑两同时进行布朗运动的粒子,则会分别以 W t ( 1 ) {displaystyle W_{t}(1)} 和 W t ( 2 ) {displaystyle W_{t}(2)} (或作 W 1 ( t ) {displaystyle W_{1}(t)} 和 W 2 ( t ) {displaystyle W_{2}(t)} )表示。为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。从爱因斯坦的文章的摘录描述了随机模型的基本原理:"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小""我们引入一时间间隔 τ {displaystyle tau } 蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔 τ {displaystyle tau } 蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。在概率论的测量理论中,需要解决一个问题。如何构造一个Σ-代数的所有功能空间的衡量子集,然后把它有限化。为了解决这个问题,采用了 Kolmogorov扩展方法。假定所有函数f的空间概率测度: f : X → Y {displaystyle f:Xto Y} 存在,那么它可以被用来指定有限维随机变量 f ( x 1 ) , … , f ( x n ) {displaystyle f(x_{1}),dots ,f(x_{n})} .的联合概率分布。现在从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为 f ( x 1 ) , … , f ( x n − 1 ) {displaystyle f(x_{1}),dots ,f(x_{n-1})} 。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标 [ f ( x 1 ) , … , f ( x n ) ] {displaystyle } 被限制在 Y n {displaystyle Y_{n}} 中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。在测度理论,如果我们有一个可数无限集合测集,所有的人都那么的联合和交集是可测集。对于我们而言,这意味着是/否依赖于可数个坐标的问题有一个概率的答案。给定一个概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} , 过滤是一个弱增长对 σ-代数 在 Ω {displaystyle Omega } , { F t , t ∈ T } {displaystyle {{mathcal {F}}_{t},tin T}} 集合一些全序集T,上界由 F {displaystyle {mathcal {F}}} 决定。即对于 s,t   ∈ T {displaystyle in T} 且 s < t, 有给定一个随机过程 X = { X t : t ∈ T } {displaystyle X={X_{t}:tin T}} 。在这个过程中,需要过滤这里的 F t {displaystyle {mathcal {F}}_{t}} .这个通过 X s {displaystyle X_{s}} 和时间s = t产生。举个例子, F t = σ ( { X s − 1 ( A ) : s ≤ t , A ∈ Σ } ) {displaystyle {mathcal {F}}_{t}=sigma ({X_{s}^{-1}(A):sleq t,Ain Sigma })} 一个随机过程总是适应其自然过滤。

相关

  • 药物成瘾物质依赖(英语:Substance dependence)或称药物成瘾(drug addiction),指需要服用药物才能使日常生活表现正常的强迫行为。出现物质依赖状况后,若突然停止服用药物,可能出现药物戒断症
  • 巴勒斯坦巴勒斯坦国(阿拉伯语:دولة فلسطين‎) 通称巴勒斯坦,是一个由居住在西亚-巴勒斯坦地区的约旦河西岸以及加沙地带的阿拉伯人所建立的国家,于近代数百年中曾为奥斯曼土耳其
  • 地表径流地表径流是指雨水或是冰雪融化后的水流经地表产生的水流。表面径流可能是因为土壤已经吸饱水,无法再吸收水分,或者是一些不透水的表面(例如屋顶或是路面(英语:Road surface))使水流
  • 亨利一世亨利一世(英语:Henry I;约1068年–1135年12月1日),亦被称为儒雅者亨利(英语:Henry Beauclerc),是1100年至1135年在位的英格兰国王。亨利是征服者威廉第四子,曾学习拉丁语并接受博雅教
  • 佛罗里达大学佛罗里达大学(英语:University of Florida,简称UF,也称作UFL或Florida)是位于美国佛罗里达州盖恩斯维尔的一所公立研究型大学。佛罗里达大学是加入美国大学协会的美国和加拿大的
  • The Australian《澳大利亚人报》(英语:The Australian)是澳大利亚销量最高的大报。日报流通量11万6千份,周末版流通量25万5千份。 该报2017年9月推出中文版。《澳大利亚人报》由新闻集团旗下的
  • 截肢截肢是指因为创伤、疾病或手术而切断人体的一部分,被截肢的人就会被称为截肢者。截肢主要分为腿部截肢及手部截肢。人们要截肢可能是因为患上食肉菌、医疗事故、食物中毒、糖
  • 日常生活活动日常生活活动(英语:Activities of daily living、(ADLs 或 ADL))是用于医疗照护的用语,特别用在年长者的照顾上。日常生活活动是指在日常生活普遍会进行的活动,包含表现自我照顾(
  • 危险象形符号图危险的象形图是国际全球化学品统一分类和标签制度的分类和标签制度(GHS)一部分。全球统一制度包含两组集合象形符号:一组标签的集装箱和用于工作场所的危险警告,另一组使用的运
  • 短肠症候群短肠症候群(简称SBS)是由于小肠较短,功能较弱所引起的吸收异常(英语:Malabsorption)。主要症状是腹泻,其可导致脱水,营养不良和体重减轻。其他症状可能包括腹胀,胃灼热,感觉疲倦,乳糖不