首页 >
随机过程
✍ dations ◷ 2025-08-29 00:17:37 #随机过程
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。设
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
为一概率空间,另设集合T为一指标集合。如果对于所有
t
∈
T
{displaystyle tin T}
,均有一随机变量
ξ
t
(
ω
)
{displaystyle xi _{t}(omega )}
定义于概率空间
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
,则集合
{
ξ
t
(
ω
)
|
t
∈
T
}
{displaystyle {xi _{t}(omega )|tin T}}
为一随机过程。通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数
ω
{displaystyle omega }
只为分辨同类随机过程中的不同实例,如在上文下中不构成误会,通常略去。例如表达单次元布朗运动时,常以
W
t
{displaystyle W_{t}}
表达,但若考虑两同时进行布朗运动的粒子,则会分别以
W
t
(
1
)
{displaystyle W_{t}(1)}
和
W
t
(
2
)
{displaystyle W_{t}(2)}
(或作
W
1
(
t
)
{displaystyle W_{1}(t)}
和
W
2
(
t
)
{displaystyle W_{2}(t)}
)表示。为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。从爱因斯坦的文章的摘录描述了随机模型的基本原理:"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小""我们引入一时间间隔
τ
{displaystyle tau }
蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔
τ
{displaystyle tau }
蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。在概率论的测量理论中,需要解决一个问题。如何构造一个Σ-代数的所有功能空间的衡量子集,然后把它有限化。为了解决这个问题,采用了 Kolmogorov扩展方法。假定所有函数f的空间概率测度:
f
:
X
→
Y
{displaystyle f:Xto Y}
存在,那么它可以被用来指定有限维随机变量
f
(
x
1
)
,
…
,
f
(
x
n
)
{displaystyle f(x_{1}),dots ,f(x_{n})}
.的联合概率分布。现在从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为
f
(
x
1
)
,
…
,
f
(
x
n
−
1
)
{displaystyle f(x_{1}),dots ,f(x_{n-1})}
。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标
[
f
(
x
1
)
,
…
,
f
(
x
n
)
]
{displaystyle }
被限制在
Y
n
{displaystyle Y_{n}}
中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。在测度理论,如果我们有一个可数无限集合测集,所有的人都那么的联合和交集是可测集。对于我们而言,这意味着是/否依赖于可数个坐标的问题有一个概率的答案。给定一个概率空间
(
Ω
,
F
,
P
)
{displaystyle (Omega ,{mathcal {F}},P)}
, 过滤是一个弱增长对 σ-代数 在
Ω
{displaystyle Omega }
,
{
F
t
,
t
∈
T
}
{displaystyle {{mathcal {F}}_{t},tin T}}
集合一些全序集T,上界由
F
{displaystyle {mathcal {F}}}
决定。即对于 s,t
∈
T
{displaystyle in T}
且 s < t, 有给定一个随机过程
X
=
{
X
t
:
t
∈
T
}
{displaystyle X={X_{t}:tin T}}
。在这个过程中,需要过滤这里的
F
t
{displaystyle {mathcal {F}}_{t}}
.这个通过
X
s
{displaystyle X_{s}}
和时间s = t产生。举个例子,
F
t
=
σ
(
{
X
s
−
1
(
A
)
:
s
≤
t
,
A
∈
Σ
}
)
{displaystyle {mathcal {F}}_{t}=sigma ({X_{s}^{-1}(A):sleq t,Ain Sigma })}
一个随机过程总是适应其自然过滤。
相关
- 海克尔恩斯特·海因里希·菲利普·奥古斯特·海克尔(Ernst Heinrich Philipp August Haeckel,1834年2月16日-1919年8月9日)生于波茨坦卒于耶拿,德国生物学家、博物学家、哲学家、艺术家
- 细胞免疫细胞介导免疫(英语:Cell-mediated immunity)是一种免疫反应。细胞介导免疫会活化巨噬细胞、T细胞(CD4+或CD8+)并释放淋巴因子。不像体液免疫,其中没有抗体参与免疫反应。病原体被
- 胰腺炎胰脏炎(英语:Pancreatitis)也称为胰腺炎,指的是胰脏的发炎。胰脏是身体里的一个大型器官,位置在胃后方,功能有分泌消化酵素等等。 胰脏炎有两种,分别是急性(英语:Acute_pancreatitis)
- 蜱蜱(拼音:pí,注音:ㄆㄧˊ,音同“皮”),又名蜱虫、壁虱、扁虱、草爬子,是一种体形极小的蛛形纲蜱螨亚纲蜱总科的节肢动物寄生物,仅约火柴棒头大小。不吸血时,有米粒大小,吸饱血液后,有指
- 医疗错误医疗疏失,又称医疗过失、医疗错误、医疗失误,通常指可以被避免的医疗照护不良反应,无论它是否明显的被证明对病人有危害。它可能是源自于不精确或错误的诊断、或疗法。造成严重
- 再献圣殿节灯台光明节灯台(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
- 搜索引擎搜索引擎(英语:search engine)是一种信息检索系统,旨在协助搜索存储在计算机系统中的信息。搜索结果一般被称为“hits”,通常会以表单的形式列出。网络搜索引擎是最常见、公开的
- 构词学词法学(英语:morphology,“组织与形态”),又称形态学、构词学,是语言学的一个分支,研究单词(word)的内部结构和其形成方式。如英语的dog、dogs和dog-catcher有相当的关系,英语使用者能
- 时态时或时态(Tempus、英语:Tense),是一种语法范畴,在语法里是表示行为发生的时间和说话时的关系。一般分为过去时、现在时、将来时,通常也有与表示动作进行或终止的进行式和完成式等
- 有限集合数学中,一个集合被称为有限集合,简单来说就是元素个数有限,严格而言则是指有一个自然数n使该集合与集合 { 1 , 2 ,