随机过程

✍ dations ◷ 2025-11-26 01:35:02 #随机过程
在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。设 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} 为一概率空间,另设集合T为一指标集合。如果对于所有 t ∈ T {displaystyle tin T} ,均有一随机变量 ξ t ( ω ) {displaystyle xi _{t}(omega )} 定义于概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} ,则集合 { ξ t ( ω ) | t ∈ T } {displaystyle {xi _{t}(omega )|tin T}} 为一随机过程。通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数 ω {displaystyle omega } 只为分辨同类随机过程中的不同实例,如在上文下中不构成误会,通常略去。例如表达单次元布朗运动时,常以 W t {displaystyle W_{t}} 表达,但若考虑两同时进行布朗运动的粒子,则会分别以 W t ( 1 ) {displaystyle W_{t}(1)} 和 W t ( 2 ) {displaystyle W_{t}(2)} (或作 W 1 ( t ) {displaystyle W_{1}(t)} 和 W 2 ( t ) {displaystyle W_{2}(t)} )表示。为了了解金融市场和研究布朗运动,在19世纪后期人们开始研究随机过程。第一个用数学语言描述布朗运动的是数学家Thorvald N. Thiele。 他在1880年发表了第一篇关于布朗运动的文章。随后,在1900年, Louis Bachelier的博士论文“投机理论” 提出了股票和期权市场的随机分析。阿尔伯特·爱因斯坦(在他1905年的一篇论文中)和玛丽安·一维Smoluchowski(1906年)从物理界的角度出发,把它作为了一种间接证明了原子和分子的存在。他们所描述的布朗运动方程在1908年被让·佩兰核实。从爱因斯坦的文章的摘录描述了随机模型的基本原理:"它必须明确假定每个单个颗粒执行的运动是独立于所有其他的粒子的运动;它也将被认为是1的动作和相同的颗粒在不同的时间间隔是独立的过程,只要这些的时间间隔不是非常小""我们引入一时间间隔 τ {displaystyle tau } 蛋白考虑,相对来说这是非常小的,但是我们可观察到的时间间隔,仍然过大,在两个连续时间间隔 τ {displaystyle tau } 蛋白,由粒子所执行的动作可以被认为是作为彼此独立的事件"。在概率论的测量理论中,需要解决一个问题。如何构造一个Σ-代数的所有功能空间的衡量子集,然后把它有限化。为了解决这个问题,采用了 Kolmogorov扩展方法。假定所有函数f的空间概率测度: f : X → Y {displaystyle f:Xto Y} 存在,那么它可以被用来指定有限维随机变量 f ( x 1 ) , … , f ( x n ) {displaystyle f(x_{1}),dots ,f(x_{n})} .的联合概率分布。现在从这个n维概率分布,我们可以推断出第(n - 1)维边缘概率为 f ( x 1 ) , … , f ( x n − 1 ) {displaystyle f(x_{1}),dots ,f(x_{n-1})} 。但是需要注意的是兼容性状态,即这种边际概率分布是在相同的类作为1从完全成熟的随机过程衍生。例如,如果该随机过程是一个Wiener过程(在这种情况下,边缘是指数类的所有高斯分布),但不是在一般对所有的随机过程。这种方程称为查普曼-洛夫方程。柯尔莫哥洛夫扩展定理保证了随机过程的有限维概率分布满足查普曼 - 柯尔莫哥洛夫的兼容性条件的存在..回想一下,在洛夫公理化中存在对于概率问题有还是没有的不确定性。柯尔莫哥洛夫扩展首先声明是可衡量的功能,其中有限多个坐标 [ f ( x 1 ) , … , f ( x n ) ] {displaystyle } 被限制在 Y n {displaystyle Y_{n}} 中可测量的子集所有集合。如果一个是/否有关的问题都可以通过观察至多有限多个坐标的值回答,那么它有一个概率的答案。在测度理论,如果我们有一个可数无限集合测集,所有的人都那么的联合和交集是可测集。对于我们而言,这意味着是/否依赖于可数个坐标的问题有一个概率的答案。给定一个概率空间 ( Ω , F , P ) {displaystyle (Omega ,{mathcal {F}},P)} , 过滤是一个弱增长对 σ-代数 在 Ω {displaystyle Omega } , { F t , t ∈ T } {displaystyle {{mathcal {F}}_{t},tin T}} 集合一些全序集T,上界由 F {displaystyle {mathcal {F}}} 决定。即对于 s,t   ∈ T {displaystyle in T} 且 s < t, 有给定一个随机过程 X = { X t : t ∈ T } {displaystyle X={X_{t}:tin T}} 。在这个过程中,需要过滤这里的 F t {displaystyle {mathcal {F}}_{t}} .这个通过 X s {displaystyle X_{s}} 和时间s = t产生。举个例子, F t = σ ( { X s − 1 ( A ) : s ≤ t , A ∈ Σ } ) {displaystyle {mathcal {F}}_{t}=sigma ({X_{s}^{-1}(A):sleq t,Ain Sigma })} 一个随机过程总是适应其自然过滤。

相关

  • 品行障碍品行障碍(英语:Conduct disorder)也称为行为规范障碍,是指在青少年阶段的患者出现反复、持续的攻击性、反社会性、对立违抗性的行为障碍。这些行为违反了与年龄相适应的社会行为
  • 丹毒丹毒(英语:Erysipelas)是一种主要由A组β溶血性链球菌引起的急性真皮细菌感染而导致的炎症。英语:Erysipelas的名称,来自希腊语:ἐρυσίπελας,原意为红皮肤。在欧洲某些国
  • 经济体系一群经济个体之间具有相互联系关系,如礼物经济、自然经济、市场经济、计划经济、混合经济等经济体系。市场经济体系中个体间的通货可以互相兑换,任一个体的变动都会对总体造成
  • 中岛宏中岛宏(日语:中嶋 宏/なかじま ひろし Nakajima Hiroshi,1928年5月16日-2013年1月26日)是前任世界卫生组织(WHO)总干事。日本千叶县出生,东京医科大学毕业。
  • 弱碱布朗斯特-劳里酸碱理论中,弱碱指在水溶液中不完全电离的碱,意即质子化反应不完全。一般碱的pH值范围为7~14,其中7为中性,14则为强碱性,可通过以下公式计算:相对强碱而言,弱碱从水分
  • 氢氧化铜氢氧化铜(化学式:Cu(OH)2)是金属铜的氢氧化物。它是一种淡蓝色固体,某些市售的氢氧化铜中混有一些碳酸铜,颜色偏绿。氢氧化铜自从熔铜开始就已经为人所知。公元前5000年的炼金术
  • 呼气流量峰值峰值呼气流量(英文:peak expiratory flow,PEF),也称峰值呼气流量测定(英文:peak expiratory flow rate, PEFR)是一个人的最大呼气速度,用峰值流量计测量,一个用于监测一个人呼吸空气能
  • 滨海省滨海省(英语:Littoral Province、法语:Province du Littoral)是喀麦隆的一个省,位于西部几内亚湾岸。萨纳加河在本省流入海。面积65,576平方公里,2004年人口2,202,340人。首府杜阿
  • 平民保育团平民保育团(Civilian Conservation Corps,CCC)是美国在1933年至1942年间,对19至24岁的单身救济户失业男性推行的以工代赈计划,这些救济户都是在经济大萧条期间失业、难以找到工作
  • 科依桑语系科依桑语系,或称科伊桑语系,是非洲东部坦桑尼亚的桑达韦人(Sandawe)和哈扎人(Hadza),以及非洲南部,喀拉哈里沙漠的科伊科伊人和布须曼人(或称桑人)所使用语言所属的语系,包括非洲东部的